Effects of neutron irradiation on HV-JFETs

G. Giacomini1, M. Bomben2, W. Chen1, G-F Dalla Betta3, D. Lynn1

1- Brookhaven National Laboratory – NY - USA
2- LPNHE – Paris – France
3- University of Trento, and INFN, Italy

36th RD50 Workshop – June 5th 2020
• HV silicon JFET
 → for multiplexing in ATLAS ITk
 ▪ concept
 ▪ Measurements after irradiation
 (TRIGA, JSI, Ljubljana, Slovenia)
 ▪ TCAD simulation to get insight of the physics

Review other known irradiation effects:
- Double peak in electric field
- Stability of scribeline

All silicon process done in BNL Instrumentation Division Class-100 Clean Room

- Furnaces for dry oxidations and annealings
- Double-sided mask aligner
- Wet bench (HF, RCA I & II, piranha, polyetch, …)
- Sputtering (Al, Al1%Si, Ti)
- RTA for sintering
- Laser dicing

+ dry etching and thin films deposition, but we need to outsource:
• Ion implantation
• Polysilicon deposition
A novel HV silicon JFET for ATLAS, and other silicon R&D activities at BNL

32nd RD50 workshop – 4-6 June 2018 Hamburg

Gabriele Giacomini, Wei Chen, Francesco Lanni, David Lynn, Alessandro Tricoli
(Brookhaven National Lab)

Enrico Rossi
(Stony Brook University and Brookhaven National Lab)

Irradiated at the TRIGA reactor at JSI (Ljubljana, Slovenia) with 4e14, 8e14, 1.5 e15 \(n_{eq}/cm^2 \)
The vertical HV Silicon JFET

Originally, conceived as a rad-hard switch to be used in the ATLAS I'Tk HV-Mux. GaN JFETs are very rad-hard, so HV-Mux will go with GaN.

We can modify the structure of the standard JFET by making a gap in the bottom-gate. Over the gap, the top-gate. The channel and the source as in the standard JFET. The drain is the back contact. The current flows (= drifts) from source to drain through the gap in the bottom-gate. The high voltage applied to the drain falls in the thick substrate, being the bottom-gate almost a planar implant.

The highest electric field develops at the junction top-gate/channel, so special care in the choice of the parameters (hole width, channel doping concentration). GR termination also needed at the border of the bottom-gate.
Interdigitated design to increase the gate width and thus the ON current (especially after irradiation). The active area is 1x1 mm², which sets the gate width to 20 cm. Triode configuration, top-gate connected to the bottom-gate. 6 photolithographic masks, 4 implants. Both n-type and p-type JFET, on 4” epitaxial wafers (TOPSIL): 50µm thick, $N_C \sim 1e14 cm^{-3}$.
I-V characteristics before irradiation

Splittings on the channel dose. At the lower doses, the channel was pinched-off already at $V_{\text{gate}}=0\text{V}$. The higher the dose, the lower V_{BD}.

We irradiated the devices with higher current capability (but lower V_{bd}).
Irradiation results

Neutrons at TRIGA, JSI

Not IRRADIATED

\[V_{\text{gate}} \text{ Step}=50\text{mV} \]

1- effect of acceptor removal: lower \(V_{\text{gate}} \) needed to pinch-off the channel
2- dramatic change of \(V_{\text{drain}, \text{Saturation}} \) with fluence
3- \(V_{\text{breakdown}} \) unchanged

IRR=4e14 n/cm\(^2\)

\[V_{\text{gate}} \text{ Step}=50\text{mV} \]

\[V_{\text{gate}}=1.9\text{V} \]

IRR=8e14 n/cm\(^2\)

\[V_{\text{gate}} \text{ Step}=100\text{mV} \]

\[V_{\text{gate}}=1.6\text{V} \]

IRR=1.5e15 n/cm\(^2\)

\[V_{\text{gate}} \text{ Step}=50\text{mV} \]

\[V_{\text{gate}}=1.5\text{V} \]
Suitability as a switch for HV-Mux

ON state:
- ideally, $V_{\text{drain}} \sim 0$, $I_{\text{drain}} \sim \infty$
- I_{drain}, saturation limited by the channel dose (which needs to be small to have high VBD)
- V_{Drain}, saturation very high: high power dissipation within the JFET

OFF state:
- $V_{\text{breakdown}}$ low (600V needed)
- Gate leakage current \sim OK

IRR=$1.5e15$ n/cm2
Perugia model:

$\text{fluence} = \Phi \, n_{eq} / \text{cm}^2$

- Trap acceptor: $e_{level}=0.42$, $\text{density}=1.6 \times \Phi$, $\text{degen}=1$, $\text{sign}=2 \times 10^{-15}$, $\text{sigp}=2 \times 10^{-14}$
- Trap acceptor: $e_{level}=0.46$, $\text{density}=0.9 \times \Phi$, $\text{degen}=1$, $\text{sign}=5 \times 10^{-15}$, $\text{sigp}=5 \times 10^{-14}$
- Trap donor: $e_{level}=0.36$, $\text{density}=0.9 \times \Phi$, $\text{degen}=1$, $\text{sign}=2.5 \times 10^{-14}$, $\text{sigp}=2.5 \times 10^{-15}$
TCAD simulation of ideal irradiated HV-JFETs

1- Perugia model does not simulate acceptor removal:
saturation currents are the same for every fluence
2- still dramatic change of V_{drain} vs fluence
The height of the potential barrier that the holes need to cross before injection to the substrate (drain) increases with fluence.

- The potential barrier is lowered by V_{drain}, so larger V_{drain} must be applied at higher Φ.

- The potential barrier is due to the build-up of positive charge, from the ionized donor traps (no electrons to fill-up the traps!!)
Other effects in irradiated Silicon that can be explained with trap charging – 1

Double peak of the electric field

- Plenty of electrons towards the n+
- So “all” traps are filled with electrons:
 - donor traps are neutral,
 - acceptor traps are negative
- net negative charge close to the n+ → regular junction n+/p-

- Plenty of holes towards the p+
- So “all” traps are empty
 - donor traps are positive
 - acceptor traps are neutral
- net positive charge close to the p+ → regular junction p+/n-

- Can be simulated using the Hamburg Penta Trap model (HPTM)
- In the explored parameter range (substrate thickness, fluence, bias voltage), Perugia model doesn’t show the double peak.
Simulation of the double peak of the electric field

HPTM with $\Phi=1\times10^{15}$ n_{eq}/cm^2

Dominated by donor traps (empty=ionized)

Dominated by acceptor trap (filled=ionized)
Other effects in irradiated Silicon that can be explained with trap charging – 2

Stability of scribeline

Known effect that, in pin diodes, after type inversion, the scribeline doesn’t inject much current

- From the damaged region, plenty of electrons and holes
- From the simulations: close to the scribeline,
 - 10% of any trap is ionized
 - 90% of Donor traps are filled (with electrons), and neutral
 - 90% of Acceptor traps are empty ($s_p = 10s_n$), and neutral
- Low potential!
Conclusions

A new silicon structure: vertical HV-JFET successfully fabricated at BNL

• Irradiated up to the fluence level of ITk ATLAS, and characterized
• Not really the best switch for the HV-Mux ...

• Curves explained with TCAD simulations
 \[\rightarrow \text{high } V_{\text{drain, saturation}} \text{ due to positive charges,} \]
 \[\text{introduced by ionized donor traps} \]

• Charged (ionized) traps explain other effects, for example:
 - stability of scribeline
 - double peak effect
 -
BACK-UP