Effects of trapping on the collected signals from subsequent laser pulses in irradiated silicon sensors

Leena Diehl, Riccardo Mori, Marc Hauser, Karl Jakobs, Ulrich Parzefall, Liv Wiik-Fuchs
Preface:

- Known: Trapping and recombination reduce the collected charge in irradiated silicon strip sensors.
- Defects have not negligible detrapping times at operation temperatures (e.g. -20°C).
- Trapped charge has an influence on subsequent pulses.
- Open points: Is it recombination or an electric field change, necessity of a model to describe the effects.

Materials:

- P-type silicon diodes, irradiated with neutrons.
- Fluences of 1 and 2e15 \(\frac{n_{eq}}{cm^2} \).

Methods:

- (Edge and) Top-TCT measurements, using subsequent laser pulses of different intensities and time distances.
- Simulations.
Interpretation

Electric Field change model:

- Trapped charges change the eff. Doping concentration and thereby the el. Field
- Trapping of electrons reduces the depletion width, trapped holes increase it
- This would mean:
 - Intensity dependence: Amount of trapped charges determines speed of field change
 - Voltage dependence: Effect reduces if sensor is fully depleted / velocity is saturated
 - Delay dependence: Field change is only temporary, if enough charges detrap, the effect gets smaller
Top-TCT measurements

Fluence: $1 \cdot 10^{15} \, n_{eq}/cm^2$

- Higher intensity increases the slope of the decrease
 - More charge is created and trapped
 - For low intensities: Trapped charge not sufficient to change electric field

Voltage: 70V
Delay: $\sim 2.8 \, \mu s$
Top-TCT measurements

Fluence: $1 \cdot 10^{15} \, n_{eq}/cm^2$

- Low Voltages: Fast decrease, almost no pulse left
 - Peak pulse amplitude depends strongly on el. field peak amplitude
 - Low el. field vanishes fast -> flat / overturned el. field profile
- High Voltages: Decrease Vanishes
 - Velocity is already saturated, measurement is insensitive to the el. field peak amplitude decrease
Top-TCT measurements

Fluence: $1 \cdot 10^{15} \, n_{eq}/cm^2$

- Short delays: Less charge is detrapped
 - El. Field change processes faster
- Long delays: More charges detrapped:
 - El. field changes the same with each pulse, but already starts to change back to the original el. field configuration
Simulations

- Done with kDetSim
- Laser beam on sensor top, charge is created in buckets
- Buckets are followed till the junctions, calculating the amount of trapped charge
- Re-Calculation of electric field, effective doping concentration and trapped charges for each pulse
- Variables: Voltage, $N_{eff}(0)$ (fluence), laser intensity, number of defects

El. Field @200V, Neff: $7e12 \text{ 1/cm}^3$, diode

Beam spot

1st pulse
Holes
Electrons
Total charge

Position of 2D-el. field plots
Example:
- Doping Concentration $7e12 \ 1/cm^3$
- 200 V
- Total of ~11500 carriers created

➢ Amplitude ca. only half in the end

Note: Simulation is NOT considering pulse delays (more detrapping)

Maximal Amplitudes
Higher Laser intensity:
• Doping Concentration $7e12 \text{ 1/cm}^3$
• 200 V
• Total of ~23100 carriers created

➢ Faster decrease, max. Amplitude only about 1/3 in the end, “saturation” reached
Extreme case:

- Low eff. Doping concentration
- Low voltage (100V)
- High number of defects

➤ Pulse basically vanishes, el. field turned around (now field left where laser hits)
Fit Model (Work in progress)

Simulation: Observation of the change of the electric field with the trapped charge, but: neglected so far the detrapping between pulses
 ➢ (More charge trapped -> faster detrapping! → more exponential behavior)

Approach: Describe easily the current peaks following a very approximated model in order to proof that the polarization is what is really happening

Fit:
- Top- TCT
- Diodes
- Non-depleting bias voltage

Assumptions:
- Constant Neff => triangular field
- Capture of holes only, decreasing the negative space charge
- Uniform capture per depth, field independent (Error here, work in progress)
- Same trapping at every laser pulse
- Full trap occupation in the space charge (captured holes tends to emit completely)
- Current peak proportional to el. field peak E_0
Fit Model (Work in progress)

• At every pulse: \(n_t(t_{\text{pulse}}) = n_t(t_{\text{pulse}}^-) - \delta n_t \), where \(n_t \propto \text{intensity} \)

• Trap occupation evolution between pulses:

\[
\frac{dn_t}{dt} = e_p (N_t - n_t) \rightarrow -\frac{dp_t}{dt} = e_p p_t
\]

\[
p_t(t) = p_t(\infty) - [p_t(\infty) - p_t(t_{\text{pulse}})] e^{-\frac{t}{\tau}}, \quad \tau = e_p \propto T^2 e^{\frac{E_{\text{act}}}{K_b T}}
\]

• From the assumptions: \(p_t(\infty) = 0 \rightarrow p_t(t) = p_t(t_{\text{pulse}}) e^{-\frac{t}{\tau}} \)

• At every pulse \(i \), after pulse repetition time \(\Delta T \):

\[
p_t(iT) = p_t((i - 1)\Delta T) e^{-\frac{\Delta T}{\tau}} + \delta n_t
\]

\[
\rightarrow p_t(i) = \sum_{k=0}^{i} \delta n_t e^{\frac{kT}{\tau}} - \delta n_t
\]

\[
\rightarrow p_t(i) = \delta n_t \frac{1-e^{-\frac{\Delta T(i+1)}{\tau}}}{1-e^{-\frac{\Delta T}{\tau}}} - \delta n_t
\]

with \(p_{MAX} = N_t \)

• El. Field peak: \(E_0 = \sqrt{2e(N_{eff} - p_t(i))V} \)

• Current peak:

\[
I_{PK} \propto \left[n_e \frac{v_{se} E_0(i)/E_{ce}}{\sqrt{1+(E_0(i)/E_{ce})^2}} + n_h \frac{v_{sh} E_0(i)/E_{ch}}{1+(E_0(i)/E_{ch})^2} \right]
\]

where \(n_e = n_h \propto \text{intensity} \), for \(v_{se}, E_{ce}, v_{sh}, E_{ch} \)

see [Scharf, Klanner, NIM A 2005]
Currently: Study of the dependencies of the slope to confirm the model:

- vs pulse repetition time
- vs bias voltage
- vs intensity

Note: Parabolic dependence on intensity means no recombination but trapping!
• Observation: Assuming constant trapping density does not reproduce the results
 ➢ Larger voltage results in a lower slope

• Improvement: Considering lower trapping densities for larger carrier velocity as expected
 ➢ Work in progress!
Conclusion

- Trapping has a significant impact on the signals created by subsequent laser pulses

- Systematic measurements proofed the dependence on laser intensity, delay time and voltage

- Explained by a change of el. field in the sensor: polarization effect
 - Confirmed by simulations

- Work in progress
 - Fitting a trapping-detrapping model to the data
 - Extract trapping and detrapping parameters

- More studies and simulations are necessary to investigate the possible impacts for applications
 - MIP – like particles, electrons and holes created through the entire sensor
 - Charge multiplicative sensors (e.g. LGADs), large amount of charge carriers, possible impact on multiplication layer?
Conclusion

Albert-Ludwigs-Universität Freiburg

- Trapping has a significant impact on the signals created by subsequent laser pulses
- Systematic measurements proofed the dependence on laser intensity, delay time and voltage
- Explained by a change of el. field in the sensor: polarization effect
 - Confirmed by simulations
- Work in progress
 - Fitting a trapping-detrapping model to the data
 - Extract trapping and detrapping parameters
- More studies and simulations are necessary to investigate the possible impacts for applications
 - MIP – like particles, electrons and holes created through the entire sensor
 - Charge multiplicative sensors (e.g. LGADs), large amount of charge carriers, possible impact on multiplication layer?

Thanks for your attention!
Backup

Irradiated Sensor, 2e15, 500V

Graphs showing current vs. time for different voltages and delays.
Extreme case:

- Low eff. Doping concentration
- Low voltage (200V)
- High number of defects

- Pulse basically vanishes, el. field turned around (now field left where laser hits)
• **Charge multiplication**

 • High field close to strip implants saturates carrier speed and produces “hot” carriers.
 • Hot carriers cause impact ionization: electron-hole pair creation.
 • Avalanche mechanisms: charge collection diverges.

• **Plasma effect**

 • Free carriers are not negligible and influence the electric field distribution: screening effect -> charge „clouds“ travel slower.
 • Carriers drift apart due to diffusion and electrostatic repulsion -> lateral spread.
 • Increases charge collection time by so-called plasma time.
Bacup: Setups and Techniques

Edge-TCT Measurements

Use of a fiber splitter and cables of different lengths to alter the delay of one pulse
Small intensity loss due to cable length and junctions
Otherwise no difference between the pulses

- 30 single pulses send
- Measured for different laser intensities
- Besides small artifacts at low intensity, no change visible for all pulses

Measured with non irradiated sensor, fully depleted, at one depth
Signal Generation

- If sensor not fully depleted → no signal expected from non depleted area
- Signal pulse time expected to be approximately constant
- In Charge Multiplication: Additional contribution to the signal first from multiplied electrons, then from multiplied holes
Irradiated Sensor, 2e15

- Different delay: Impact on the charge decrease
- For longer delay: Detrapping already in progress
- Small fluctuations due to resolution, but trend is stable

All measurements at 1100 V, temperature of ~-30°C, ~50 μm beneath strips