

TCAD

TCAD milestones for the next 5 years:

- M1: Comparison of commercial TCAD tools; preparation of a recommendation for parameters and physics models. (Q4/2019)
- M2: Development of a reliable radiation damage model covering the HL-LHC fluences for protons and neutrons for a given operation temperature. The model shall be able to reproduce I-V, C-V, CCE and the E-field including double junction effects. (Q4/2020)
- M3: Model M1 extended to cover temperature dependence of the bulk-damage related effects from room temperature down to -30 °C. (Q3/2021):
- M4: Model from M2 extended to cover annealing effects (Q3/2022):
- M5: Model of the donor and acceptor removal (SiPMs, LGAD, CMOS,..) (Q3/2020):
- M6: Surface damage model with correct modelling of surface damage in p-type segmented sensors. (Q1/2021)
- M7: Evaluation of the possibility of the implementation of cluster related defects in the commercial TCAD device simulators by using a charge carrier occupation dependent energy level distribution. (Q2/2021)

Synopsys and Silvaco TCAD use different parameterizations and models for band gap, density of states, thermal velocities etc.

- Examples:
 - band gap:

##### Synopsys #####	#####Silvaco #####
def E_g(T):	def E_g_Silvaco(T,EG300=1.08):
Eg0 = 1.16964	# EG300 = 1.08 # Bandgap at T=300K
alpha = 4.73E-4 # 1990	EGALPHA = 4.73E - 4.75E - 4.
beta = 636.0	EGBETA = 636.0
return Eg0 - alpha * T**2 / (T + beta)	<pre>return EG300 + EGALPHA*(300**2 /(300.0+EGBETA) - T**2 / (T + EGBETA))</pre>

- hole effective density of state:

####	##Silvaco) #####				
def	N_v_Silv	/aco(T,	NV3	300=1	.04e19):	
	NVF = 1.	5				
	return	NV300*((T)	/ 300.	.0)**NVF	

M1

Temperatur [K]

Ratio

Temperatur [K]

Senaurus / Atlas default

Sentaurus / Atlas tuned

Ratio

04.06.2020 | Zoom

Joern Schwandt University of Hamburg

Synopsys and Silvaco TCAD comparison using the HPTM

 TABLE I

 HAMBURG PENTA TRAP MODEL (HPTM) PARAMETER

Defect	Туре	Energy	g_{int} [cm ⁻¹]	σ_e [cm ²]	σ_h [cm ²]
E30K	Donor	E _C -0.1 eV	0.0497	2.300E-14	2.920E-16
V_3	Acceptor	E_C -0.458 eV	0.6447	2.551E-14	1.511E-13
I_p	Acceptor	E_C -0.545 eV	0.4335	4.478E-15	6.709E-15
H220	Donor	E_V +0.48 eV	0.5978	4.166E-15	1.965E-16
C_iO_i	Donor	E_V +0.36 eV	0.3780	3.230E-17	2.036E-14

I-V at T = -20°C

04.06.2020 | Zoom

Joern Schwandt University of Hamburg

100 V Sentaurus

500 V Sentaurus

1000 V Sentaurus

175

100 V Sentaurus

500 V Sentaurus

1000 V Sentaurus

175

200

100 V Atlas

500 V Atlas

1000 V Atlas

150

200

100 V Atlas

500 V Atlas

1000 V Atlas

E-Field at different voltages

04.06.2020 | Zoom

Joern Schwandt University of Hamburg