

TPA - TCT Two Photon Absorption -Transient Current Technique

<u>Moritz Wiehe^{1,2}</u>, Marcos Fernandez Garcia^{1,5}, Isidre Mateu¹, Michael Moll¹, Raúl Montero Santos³, Rogelio Palomo Pinto⁴, Ivan Vila Alvarez⁵

¹CERN

²Universität Freiburg
³Universidad del Pais Vasco (UPV-EHU)
⁴Universidad de Sevilla (US)
⁵Instituto de Física de Cantabria (CSIC-UC)

36th RD50 Workshop

Outline

- Gaussian Beam Optics
- Charge Generation via TPA
- Z-scan
- X-Z-scan

TPA-TCT: Reminder

Characterization of un-/irradiated silicon detectors with strong focusing of fs-laser pulses Advantage of TPA: – charge generation only at focal point – very good spatial resolution – 3D mapping of sensor

- Resolving sensor properties along beam direction: only possible with TPA
- Resolution perpendicular to beam ~1-2 μm
- Irradiated detectors tested: defects induce SPA –Single Photon Absorption; correction methods have been developed
- It is planned to use setup also for <u>SEU testing</u>

10 μm depleted; Imaged by edge-TCT (left) and TPA-TCT (right])

TPA-TCT at **CERN**

2nd July 2019: delivery of laser and first signal

see also 35th RD50: https://indico.cern.ch/event/855994/contributions/3637067/

commissioning ongoing...

Several delays since last RD50:

- CERN Laser Safety
- Laser stability
- DUT/reference correlation
- \rightarrow coupling of light to objective
- defects in pulse compressor module

Gaussian Laser Beam

Two Photon Absorption

Z-scan..

This sensor is ~200µm thick

movement of positioning stage ≠ movement of focal point

ER

Moritz Wiehe - CERN - TPA-TCT

8

0

1.06

06/03/20

06/03/20

X-Z-scan – Beam Radius

The linear part is fitted with function

 $w(z) = z \cdot \tan \theta = z \cdot \frac{w_0}{z_0} = z \cdot \frac{\lambda}{w_0 \pi n}$

with z corrected for refraction

Fit results in w0 = 0.97 μ m \rightarrow NA = 0.5

(note: objective nominal NA = 0.5)

But not in agreement with results at focal point.

Conclusions:

At the focal point:

- z-scans result in NA = 0.34
- beam radius at waist w0=1.7 μ m \rightarrow NA = 0.3
- Some distance to the focal point: - linear increase of w with $z \rightarrow NA = 0.5$

- Spatial distribution of charge well understood
- Behavior of laser beam well understood
- For this measurement the focusing (coupling of beam to objective) was not optimal

Thanks for your attention!

Additional Use-case for TPA

CERN Electronic Systems for Experiments (CERN-EP-ESE)

Single Event Upset (SEU) test with TPA, performing measurements in Montpellier

Can this be done at CERN with TPA-TCT-setup?

Method:

- flip electronics chip upside-down
- image chip with IR illumination/camera
- perform high spatial precision SEU test

Requirement for CERN TPA-TCT-setup: - employ IR microscopy

Montpellier Laser Scan Results X. Llopart, CERN Electronic Systems for Experiments

IR + VIS Microscopy

microscope setup mounted on optical table for educational purposes

ERI

Backup: z-scan fit

z0 affects

- the width of the arctan function
- the scaling of the horizontal axis

The z-scan fits are done with arctan(K*z/z0)

Can z0 be found unambiguously from a single z-scan?

Yes, since K/z0 as a function of z0 is strictly monotone.