

1550 nm Femtosecond Fiber Laser System for the Two-Photon Excitation of Transient Currents in Semiconductor Detectors

Héctor Muñoz-Marco¹, Azahara Almagro-Ruiz¹, Pere Pérez-Millán¹ ¹FYLA LASER SL

36th RD50 Workshop

TWO-PHOTON EXCITATION

MODE-LOCKED LASERS

• U. Keller, Nature, 2003.

TPA-TCT. WHY FIBER LASERS?

• D. McMorrow et al. 2002.

We follow a **Chirped Pulsed Amplification (CPA)** strategy. Pulses are streched temporally, amplified and recompressed.

Gérard Mourou

École Polytechnique, Palaiseau, France University of Michigan, Ann Arbor, USA

Donna Strickland

University of Waterloo, Canada

"for their method of generating high-intensity, ultra-short optical pulses"

• M. E. Fermann and I. Hartl, *Nature Photonics*, 2013.

ALL-FIBER CPA Compressor is a Hollow Core Fiber

1550 NM FEMTOSECOND FIBER LASER DESIGNED FOR TPA-TCT

6/2/2020

TPA-TCT - 36th RD50 Workshop

OUTPUT OPTICAL PROPERTIES

STABILITY

Output average power at 4 MHz pulse rep rate

PULSE ENERGY SELECTION

PULSE DURATION TUNABILITY

PULSE REP RATE SELECTION

1 KHz

100 Hz

SYNCHRONIZED OUTPUT COMMUTING

PRR 1000 Hz; SHUTTER FALL TIME < 1 us

LABVIEW-BASED CONTROL OF FUNCTIONALITIES

CONCLUSIONS

- A **1550 nm femtosecond fiber laser system** with properties and functionalites especially designed for the needs of the **TPA-TCT** has been developed.
- The femtosecond fiber laser source is based in an All-fiber Chirped Pulse Amplification architecture that provides excellent robustness and stability to the output pulsed signal of the system.
- The system has been tested succesfully at CERN for the generation of localized transient currents in semiconductor detectors.
- Work to obtain shorter pulses (<100 fs) is ongoing.
- Further integration work with the full TPA-TCT system is envisaged.

THANKS FOR YOUR ATTENTION

QUESTIONS?