t-Channel white paper planning

Getting started

1	Introduction	3
2	Description of the <i>t</i> -channel DM simplified model	3
3	Different dark matter types	3
	3.1 Dirac dark matter	3
	3.2 Majorana dark matter	3
	3.3 Scalar dark matter	3
	3.4 Vector dark matter	3
4	Constraints on model parameters	3
	4.1 Constraints from the EW precision measurements	3
	4.2 Constraints from the flavour sector	3
	4.3 Constraints from astroparticle physics	3
5	Benchmark points	3
	5.1 LO-to-NLO k-factors	3
6	Sensitivity studies	3
-	Color bernd	
7	Going beyond	3

https://www.overleaf.com/project/5f32eace13c6c30001264129

Getting started

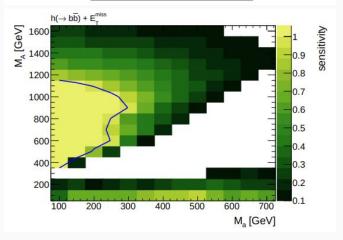
1	Introduction	3	TBD
2	Description of the <i>t</i> -channel DM simplified model	3	Largely from Benj. et
3	Different dark matter types	3	al's paper from
	3.1 Dirac dark matter	3	January
	3.2 Majorana dark matter	3	oundary
	3.3 Scalar dark matter	3	
	3.4 Vector dark matter	3	
4	Constraints on model parameters	3	
	4.1 Constraints from the EW precision measurements	3	Jakub, Chiara,
	4.2 Constraints from the flavour sector	3	
	4.3 Constraints from astroparticle physics	3	
5	Benchmark points	3	Input from experiments
	5.1 LO-to-NLO k-factors	3	Sukanya, Disha, Adil's studies
			(+Benjamin's group)
			TBD
0	Sensitivity studies	3	
			E.g. DM from B decays
7	Going beyond	3	LLP - Jan
			00001064100

https://www.overleaf.com/project/5f32eace13c6c30001264129

Benchmark points

- CMS cards, mass grid uploaded to <u>DMWG-tChannel-code</u> repo (S3D_uR only).
 - Lambda=1, somewhat large.
 - PDF=260000 (somewhat old, chosen for consistency).
- LO/NLO:
 - Plots of xsecs and K factors for representative set of parameters * models * {XX,XY,YY}.
 - Kinematic plots: MET, HT, etc for a smaller grid with diff. K factors:
 - Broken down by {XX, XY, YY-qcd, YY-t, total}.
 - Total-only, for several {MX, MY} values overlaid.
 - Should start assembling results into common plot style. Do we have a DMWG style macro for ROOT and/or matplotlib?
 - Start putting plots or even just data in github.
 - Recommendation for a consistent LO-to-NLO reweighting scheme?

Sensitivity


- Reminder from 2HDM+a paper:
- Repeat exercise with <u>ATLAS Run 2</u> <u>monojet</u>?
 - How to handle A*e?
- Include prescription for model-independent presentation.

Selection	$\langle \sigma \rangle_{\text obs}^{95}$ [fb]	S_{obs}^{95}	S_{exp}^{95}
$p_{\rm T}^{\rm recoil} > 200 {\rm GeV}$	861	119653	86000 ⁺²⁷⁰⁰⁰ _24000
$p_{\rm T}^{\rm recoil} > 250 {\rm GeV}$	350	48636	35600+12700
$p_{\rm T}^{\rm recoil} > 300 {\rm GeV}$	156	21624	15500^{+6000}_{-4300}
$p_{\rm T}^{\rm recoil} > 350 {\rm GeV}$	87	12066	8200^{+3100}_{-2300}
$p_{\rm T}^{\rm recoil} > 400 {\rm GeV}$	52	7285	4700^{+1800}_{-1300}
$p_{\rm T}^{\rm recoil} > 500 {\rm GeV}$	21	2903	1910^{+720}_{-530}
$p_{\rm T}^{\rm recoil} > 600 {\rm GeV}$	10	1421	930 ⁺³⁵⁰ -260
$p_{\rm T}^{\rm recoil} > 700 {\rm GeV}$	4.2	578	480^{+180}_{-130}
$p_{\rm T}^{\rm recoil} > 800 {\rm GeV}$	2.1	296	267^{+100}_{-75}
$p_{\rm T}^{\rm recoil} > 900 {\rm GeV}$	1.2	165	161_{-45}^{+62}
$p_{\rm T}^{\rm recoil} > 1000 {\rm GeV}$	1.3	189	113_{-31}^{+43}
$p_{\rm T}^{\rm recoil} > 1100 {\rm GeV}$	0.5	73	71^{+27}_{-20}
$p_{\rm T}^{\rm recoil} > 1200 {\rm GeV}$	0.3	39	47^{+19}_{-13}

$$S_{i} = \frac{\sigma_{i} \left(pp \to h + E_{T}^{\text{miss}} \right)_{2\text{HDM}+\text{a}} \cdot \text{BR} \left(h \to b\bar{b} \right)_{\text{SM}} \cdot \left(\mathcal{A} \cdot \varepsilon \right)_{i}}{\sigma_{i} \left(pp \to h + E_{T}^{\text{miss}} \to b\bar{b} + E_{T}^{\text{miss}} \right)_{\text{obs}}}$$

Table 2: Observed (obs) and expected (exp) upper limits at 95% CL on $\sigma_{vis,htbb}$ =DM = $\sigma_{b=DM} \times B(h \rightarrow b\bar{b}) \times \mathcal{A} \times \varepsilon$ of $h(b\bar{b}) + DM$ events. Also shown are the acceptance \times efficiency ($\mathcal{A} \times \varepsilon$) probabilities to reconstruct and select an event in the same E_{T}^{mes} bins a generated.

Range in E _T ^{miss} [GeV]	$\sigma^{obs}_{vis,h(b\bar{b})+DM}$ [fb]	$\sigma_{vis,h(b\bar{b})+DM}^{exp}$ [fb]	Я×е [%]
[150, 200)	19.1	18.3+7.2	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	1.7+0.7	40
[500,∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

