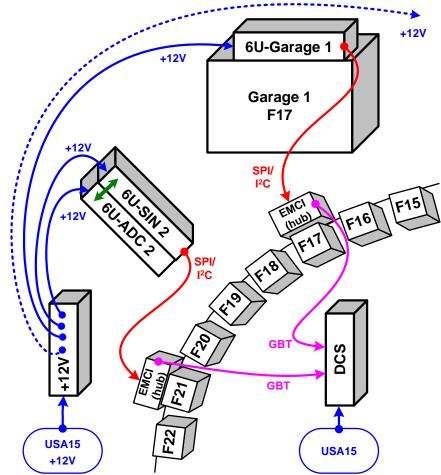
Cs MonSys Design (Upgrade steps)

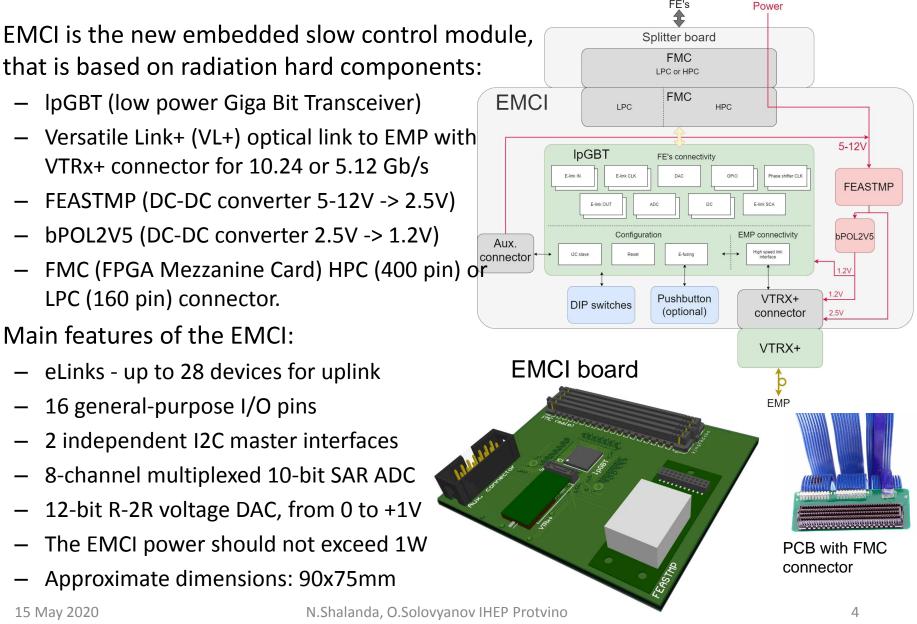
<u>Nikolay Shalanda</u>, Oleg Solovyanov

for Cs team, IHEP

15 May 2020

Concept of changes in Cs


- The same amount of Sensors:
 - 411 SIN sensors for capsule detection,
 - 56 new pressure sensors,
 - 9 Geiger for Cs source detection.
- Local Control cards (>15 years old)
 - 38 SIN (capsule detection),
 - 16 ADC (pressure),
 - 9 Garage (Locks, SIN, Geiger).
- Max 11 boxes on a side.
- **3** sub-sections for three barrels.
- The architectural concept and mechanical dimensions are preserved.
- New types of 3U-modules added.
- New electronic components with increased degree of integration.
- Difference in communication:
 optical data transfer should be used.
- Integration into the TileCal dataflow.



New: Integration with DCS using EMCI

- Garage and Cs-boxes are placed on the fingers, as well as EMCIs (Embedded Monitoring and Control Interfaces).
- EMCI have optical link to EMP (Embedded Monitoring Processor).
- Proposal is to integrate the Cs control information with the DCS data stream:
 - I²C interface to mezzanine EMCI;
 - Cs USA15 Independent power source allows to switch on/off power of the EMCI and cesium electronics between the scans.
- EMCIs could be used to connect with 3U-Crate controller via I²C too.
- ~50 EMCI (hub) boards will be needed
 - 11+8 on LB(A+C)
 - 14 on each EB
 - 3 in 3U-Cs crates near hydro-drives.

Using EMCI to DCS data flow

Concept EMCI installing on 6U-SIN

- 6U-SIN and 6U-Garage Cs-boards are ones to be connected through EMCI to DCS system.
- 90 x 75 mm² EMCI board easily fits on 6U-Cs board.
- 6U-Cs board is feeding by 12 volts that is suitable for supply EMCI board that takes < 1 W, i.e. < 100 mA, which is easy to supply.
- PCB with FMC connector can be attached with cable to 6U-board to provide:
 - I²C interface connection from EMCI to 6U-board,
 - +12 V power supply for EMCI mezzanines.
- Auxiliary connector have a I²C slave interface that is used to pre-configure IpGBT and the VTRx+ by the 6U-Cs microcontroller.
- 3U-Crate controller module can also be easy connected to EMCI board for optical link connection to EMC and DCS.

Radiation Hardness tests

Radiation levels for 4000fb⁻¹.

Radiation type	Simulated Level		Safety Fa				
		Simulation	Low Dose Rate		Lot Var.	Required Level	
			no anneal test	anneal test	LUL Val.		
Total Ionizing Dose (TID) TLB fingers	37.5 Gy	1.5	5	1	4	1125 Gy	
Total Ionizing Dose (TID) UX15 3U crate	<2 Gy	1.5	5	1	4	< 60 Gy	
Non-Ionizing Energy Loss (NIEL)	1.4 10 ¹² n/cm ²	2	1	1	4	1.12*10 ¹³ n/cm ²	
Single Event Effects (SEE)	2.9 10 ¹¹ p/cm ²	2	1	1	4	2.32*10 ¹² p/cm ²	

6U-Cs control boards are located above the Fingers at

z = 300-312 cm and r = 425-430 cm.

- 3U-Cs crates and hydraulic racks are placed in UX15 side USA15, Level 0
 z = 935..1055 cm; x = -900..-1000 cm; y = -900..-1100 cm.
- Levels were taken from radiation levels TileCal page: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/TileCalRadTestInfo</u>
- Cs electronic supposed to be powered and to be used only when there are no particle interactions in ATLAS.
- We will use active components from a single lot to remove the lot variation factor of 4, and try to perform the anneal test to remove the low dose rate factor of 5.
- Several component test boards by 10 pieces to be done for final rad tests.

Communication

- Now we have CAN-bus communication as a backup solution.
- We checked SPI connection with DB.
- We don't need big data rates to manage Cs control electronics.
- EMCI board is interesting for us because of optical link communication and integration into DCS system of TileCal.
- If full amount of EMCIs (~50 pieces) will be available, we could use them as mezzanines in every Cs board, that needs communication with DCS.
- EMCI can receive data from Cs in a poling mode with rates of dozen hertz just to have a proper sensor's response time.

Consideration

- From Cs side we need to connect to one I²C master interface of EMCI to transmit our data.
- Cs electronic board have a microcontroller that can configure EMCI board using I²C slave interface in auxiliary connector.
- EMCI mezzanine can be powered through auxiliary connector.
- We would like to use just only auxiliary connector of EMCI mezzanine to communicate with Cs electronic board:
 - FMC connector very big, 400 pin, costly, complex in managing.
- It's best for us to use only one connector auxiliary, that:
 - have I²C slave interface for configuring EMCI and
 - will have I²C master interface to communicate Data with Cs.
- So, just 2 additional pins in auxiliary connector for I²C master will significantly decrease cost & time of disign for us!

Summary

- The EMCI board can be used as a mezzanine with Cs control electronics boards for transferring data to DCS
- We are waiting for the final specifications on the EMCI, and still have two options: DB and EMCI
- The radiation tolerance requirements, including safety factors, should be ironed out and all active components should be tested before FDR at the end of 2021

Backup

Prototypes of the Cesium Electronics

- Custom made approach used to all 3U-Cs and 6U-Cs boards.
- The 3U-Cs boards are hosted in the 3U crates at the Level 0 of the cavern and used to control the hydraulic system (drives).
- The 3U boards communicates via 3U crate backplane and then EMCI.
- Mini-crates with 6U-Cs boards and Garages uniformly distributed on TileCal "fingers".
- The 6U boards communicate via
 - SPI with TileCal electronics drawer's DB

or via

- EMCI system

Nº		SYLLAS	Test Setups	Spares	Total	Fixed Design	Prototypes produced
1	3U-Eth + EMCI	3	2	3	8	+/-	2
2	3U-Valves	24	16	8	48	+	23
3	3U-Pump	3	2	3	8	+/-	3
4	3U-LeM	3	2	2	7	+	5
5	3U-FlowM	3	2	2	7	+	5
6	3U-WeightM	6	4	4	14	+	8
7	3U-Display	3	2	2	7	+	2
8	6U-Garage+EMCI	9	2	3	14	+/-	2
9	6U-SIN + EMCI	38	2	10	50	+/-	2
10	6U-ADC	16	2	4	22	+/-	2