

European Research Council

Status and timing of MIRACLS installation at LA2 (and RCX10)

Stephan Malbrunot-Ettenauer

CERN research physicist

Outlook

- Recall: MIRACLS
- Summary of MIRACLS' proof-of-principle experiment
- Planning for a compact MIRACLS at LA2
- Planning for full MIRACLS at RCX10 (=NICOLE site)

Collinear Laser Spectroscopy (CLS)

$$\delta\nu\propto\frac{\delta E}{\sqrt{E}}$$

K. Blaum, et al., Phys. Scr. T152, 014017 (2013) P. Campbell et al., Prog. Part. and Nucl. Phys. 86, 127-180 (2016) R. Neugart et al., J. Phys. G: Nucl. Part. Phys. 44, 064002 (2017)

S. Malbrunot: ISCC June 2020

the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy

<u>trap</u> \Rightarrow long observation time \Rightarrow higher sensitivity \Rightarrow more exotic nuclides accessible

AIRACLS

proof-of-principle experiment

First CLS signals in an MR-ToF

S. Malbrunot: ISCC June 2020

First CLS signals in an MR-ToF

S. Malbrunot: ISCC June 2020

First CLS signals in an MR-ToF

MIRACLS sensitivity in ²⁴Mg⁺

online measurements with O(10) ions/sec possible

AIRACLS

MIRACLS 30-keV setup

- beam cooling to cryogenic temperature for optimal (longitudinal) emittance
- good time focus and energy spread

RACLS

MIRACLS 30-keV setup

 fundamental physics with radioactive molecules (e.g. EDM searches)

Integration plan at ISOLDE

MIRACLS at RCX10

- laser lab?
- ion-beam emittance?
- no crane access
- NICOLE still there

199192

Integration plan at ISOLDE

MIRACLS at RCX10

• laser lab?

AIRACLS

- ion-beam emittance?
- no crane access
- NICOLE still there
- <u>COVID lockdown:</u>
 - ➡ lost already 4 months
 - many developments still on hold

Integration plan at ISOLDE

MIRACLS at RCX10

- laser lab?
- ion-beam emittance?
- no crane access
- NICOLE still there
- COVID lockdown:
 - ➡ lost already 4 months
 - many developments still on hold
- S. Malbrunot: ISCC June 2020

Compact MIRACLS at LA2

- COLLAPS laser lab
- measured emittance at LA1 in 2019
- crane access
- currently free location

<u>COVID lockdown:</u>

- ➡ start with room-temperature Paul trap
- ➡ reutilise components of PoP experiment
- ➡ 'best possible' MR-ToF

MIRACLS at LA2

discussions about integrations ongoing

(K. Johnston, E. Siesling, Di Giulio, J. Devine, J. Troska, COLLAPS, etc.)

IRACLS

MIRACLS at LA2

MIRACLS at LA2

Simulations of ion beam optics (Mg)

ion cooling in Paul trap 1) **Results:** • trapping efficiency >90 % laser ion-overlapp ۲ ion-beam transfer ion-laser overlap / 80 70 60 diameter of laser: 2 mm 20 4060 80 revolution number **CLS** resonance trapping in 0.020 with angles no angles **IIRACLS MR-ToF** counts 0.015 3-step simulation approach normalized benchmarked for PoP setup in 0.010 F. Maier et al., Hyperfine Interact. 240, 54 (2019) 0.005 setup not optimal, but addresses first physics

0.000

200

0

400

f (just excited ions) / MHz1.07384e9

600

800

100

Laser Setup

discussions with CERN safety ongoing (L. Di Giulio, J. Troska, K. Johnston)

integration requirements

new laser-transport tubes

- hole ISOLDE-laser lab
- tube installation
- 'deflection box' with (temporary) access
- interlock system

Required Resources

Infrastructure at LA2

- laser-beam transport (see previous slide)
- removal of block 5
- displacement of block 4 (including distribution of power, pressurised air; radiation detector, etc.)
- removal and relocation of cable trays
- passage through LA1 or LA2?
- electrical power: 80 kW (peak), ideally low noise
- pressurised air, cooling water

Required information

- access to ISOLDE 3D model
 - ➡ for minimal interference with COLLAPS and LA1
 - ➡ safety (laser, access, etc.)
- ion-beam optics along ISOLDE beamline
- emittance measurement at LA2 (TRIUMF emittance meter?)

additional lab space:

- air conditioning at all times in COLLAPS laser lab (including early 2021)
- lab space for clean assembly of apparatus
- DAQ room/section (?)

S. Malbrunot: ISCC June 2020

ISOLDE beam requirements

- ISOLDE operation at 50 keV
- if possible, stable ISOLDE beam for emittance measurement (fall 2020)
- stable ISODLE beam (end of 2020 and early 2021) to establish ion-beam transfer
 - ➡ initially e.g. ³⁹K ok, later ²⁴⁻²⁶Mg and something heavier e.g. ¹³³Cs
 - ➡ continuous beam for GPS (2020)
 - ➡ HRS+ISCOOL for bunched ions (2021)
 - ⇒ 3x 4 days

Timeline: compact MIRACLS

	2020				2020					2021											
	April	Mai	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	Mai	June	July	Aug.	Sep.	Oct.	Nov.	Dec
Ion optical simulation																					
Paul trap																					
ion transfer																					
MR-ToF for CLS																					
MR-ToF for mass separation																					
ISOLDE integration plan																					
Paul trap																					-
adaption of mechanical design																					
electronics (incl. rf)																					
workshop																					
Transfer beamline																					-
desian 30 dearee bender																					-
design: adaption of existing components																					-
workshop																					
electronics																					\vdash
HV cage design																					-
MR-ToF	-																				-
completion of HV tests																					-
mechanical design	-																				-
Ontical detection Region																					-
workshop																					-
60 kV PS testing																					-
Control and DAO system																					-
control and DAQ system																					-
order componte																					-
																					-
software implementation																					-
Assembly at LA2	<u> </u>																				-
Preparation of LA2 area	<u> </u>																				-
Paul trap + offline ion																					-
30 degree bend +																					
MB-ToF																					-
laser transport system	-																				-
Comissioning	-																				-
Emittance measurement						??															-
Paul trap: offline ion source)																					-
Paul trap: stable ISOLDE																					-
MR-ToF (offline)																					1
MR-ToF (stable ISOLDE)																					\vdash
CLS (offline)																					-
CLS (stable ISOLDE)					-			-	-		-									-	+
mass separation (offline)																					-
Online	-							-			-										-
CI S onlino	-																				-
CLS ONLINE																_					-

Timeline: compact MIRACLS

			2020					2021													
		July	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	April	Mai	June	July	Aug.	Sep.	Oct.	Nov.	Dec.		
A	ssembly at LA2																				
	Preparation of LA2 area																				
	HV cage																				
	Paul trap + offline ion source																				
	30 degree bend + acceleration																				
	MR-ToF																				
	laser transport system																				
C	omissioning													- n	rofor	rod	nori	odc			
	Emittance measurement LA2				??	??	??						for ISOLDE beam								
	Paul trap: offline ion source)																				
	Paul trap: stable ISOLDE																				
	MR-ToF (offline)																				
	MR-ToF (stable ISOLDE)																				
	CLS (offline)																				
	CLS (stable ISOLDE)																				
	mass separation (offline)																				
0	nline																				
	CLS online																				
	mass separation online																		??		

Full MIRACLS at RCX10

main upgrade: cryogenic Paul trap

- better MIRACLS performance ۰
- essential for MR-ToF mass separation with high ion capacity •
- cooling of molecules <> | R. F. Garcia Ruiz et al., Nature 581, 396 (2020)
- high quality RIB to downstream users •

proposal for integration

- **2021:** independent commissioning of cryogenic Paul trap at RCX10 •
- **2022:** experiments with (ionic) radioactive molecules •
- end of 2022: end of compact MIRACLS and move 30-keV MR-ToF to RX10 •
- 2023: beam deliver to PUMA and others

S. Malbrunot: ISCC June 2020

Summary and Conclusions

MIRACLS

- Successful proof-of-principle experiment
 - demonstration of novel technique
 - ➡ benchmark of simulation approach for 30-keV MR-ToF
 - experimental sensitivity estimate
- compact MIRACLS@LA2
 - ➡ response to COVID-19 lockdown
 - ➡ initial setup with reduced complexity (and capabilities)
 - ➡ addresses ERC science goals within funding period
 - commissioning of 30-keV MR-ToF device
- MIRACLS@RCX10
 - MIRACLS in its full potential
 - incl. downstream users and mass separation
 - initial&independent commissioning of cryogenic Paul trap
 - first physics with radioactive molecules

AIRACLS

S. Malbrunot: ISCC June 2020

https://miracls.web.cern.ch

<u> 199192</u>