
N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS PUB Note
ATL-COM-SOFT-2019-001

26th March 2020 Draft version 1.0
1

Impact of ROOT file parameters on ATLAS2

Analysis Object Data3

The ATLAS Collaboration4

ATLAS Analysis Object Data (xAOD) and derivative representations (DxAOD) are based
on the ROOT file format. In this study, we investigate the impact of ROOT file parameters
on file size and reading speeds of (D)xAODs in common ATLAS workflows. This covers
LZMA, ZLIB and LZ4 compression at different levels, as well as ROOT features like Autoflush,
Splitlevel and the TTreeCache. Recommendations are given for different scenarios, mainly
with respect to different event sizes. These recommendations can be used as a starting point
for detailed studies of new usage scenarios or new proposed file formats.

5

6

7

8

9

10

11

© 2020 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.12



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

Contents13

1 Introduction 314

2 Measurements 315

2.1 Compression Algorithm & Level 516

2.2 Autoflush 717

2.3 Splitlevel 918

2.4 TTreeCache 1019

2.5 ROOT Multithreaded Branch Decompression 1220

3 Conclusion 1621

3.1 Summarized Recommendations 1622

2



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

1 Introduction23

In the coming runs, the LHC accelerator will provide higher luminosity of particle collisions to the ATLAS24

experiment [1]. This results in more simultaneous collisions per event, which also leads to a higher demand25

of disk space to store the events at the same level of detail as in previous runs. The demand for efficient26

processing is increasing at a similar rate, since more events per time will have to be processed with the27

available hardware. Multiple technical and conceptual approaches to this issue are explored within the28

collaboration, coordinated by the AMSG-R3 group [2, 3].29

In this study we investigate how the ATLAS analysis object data format (AOD) is affected by different file30

storage options, provided by ROOT. Our focus lies on optimizing file sizes on disk and reading speeds31

from disk. The main AOD format is called (primary) xAOD [4] and contains reconstructed physics objects32

(e.g. particles, tracks, jets, ...) for each event. There are many derivative formats, called DxAOD, which33

prepare the primary xAOD for their intended analyses by removing or adding information to the stored34

objects and events.35

The measurements cover different compression algorithms and specific ROOT options influencing how36

data is structured when stored on disk. Additionally, we study the thread scaling of ROOTs multithreaded37

branch decompression. All measurements are done for a primary xAOD file, as well as a “big”, a “medium”38

and a “small” derivation.39

In the subsections of Section 2, each measurement is discussed for all four (D)xAOD formats. Section 340

mentions ideas for follow-up studies and gives a summary of all recommendations for default configurations41

of (D)xAODs.42

2 Measurements43

All tests in this study collect I/O performance metrics while reading the test files from disk. Reading44

is done by emulating ATLAS typical accesses to the files by fetching the data from the main TTree [5],45

named CollectionTree . The measurements are done for a primary xAOD file, a “big” (TOPQ1, ~170 kB46

per event on average), a “medium” (SUSY5, ~60 kB) and a “small” (TRUTH3, ~5 kB) derivation. The47

primary xAOD contains simulated ttbar events and the TOPQ1 and SUSY5 files are derived from it. The48

TRUTH3 file is derived from a different (EVNT) file, but its small event size makes it a good candidate49

to study the behavior of proposed future formats with small event sizes (DAOD_PHYSLITE) [3]. All50

branches inheriting from IParticleContainer can be read from the CollectionTree, which is accounting for51

roughly 90% of the whole file size.52

For file access, three separate backends can be used: EventLoop, AthAnalysis and ROOT itself. All53

three approaches have different initialization behaviors. EventLoop is used by default and is a lightweight54

implementation of xAOD reading in ATLAS. It has short initialization times, which is the time before the55

eventloop starts and data is read from the CollectionTree for every event. Eventloop is typically used in56

ATLAS analysis frameworks. AthAnalysis is using the same infrastructure as the ATLAS reconstruction57

framework Athena. It is not used in any tests presented here. ROOT standalone reading allows us to test58

implicit multithreaded branch decompression.59

26th March 2020 – 13:57 3



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

During the tests, I/O performance metrics are collected in two ways. First, ROOT provides the PerfStats60

mechanism to access a range of performance statistics form within the process:61

• Time spent in the event loop (starting from the 2nd event)62

• Time spent reading63

• Time spent unzipping the data64

• Read bytes65

• Average number of bytes read in one go66

• Number of read operations67

• Reading speed in MB/s68

• Number of read events69

Second, Dstat is used to collect system data from the Linux kernel. For this reason all tests assume a “quiet”70

machine with as few parallel programs executed as possible, to not bias these metrics. This is always an71

approximation, which is why tests are repeated multiple times to give an average measurement with its72

standard deviation. Dstat collects the following metrics on a per-second resolution:73

• CPU load74

• Disk I/O75

• Network I/O76

• Total I/O77

• Used memory & Vmem78

• Paging operations79

Some of these metrics are independent of initialization times, but some, especially all Dstat metrics, are80

biased by longer/shorter initialization times. Usually these differences become relatively small when the81

job runs over many events.82

Clearing the relevant system caches between individual tests ensures that test files are read from disk and83

not cached in memory.84

All tests are executed on the same hardware:85

• Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 4 physical cores, 8 logical cores86

• 2× 128kB L1 (instruction, data), 1MB L2 (unified), 8MB L3 (unified)87

• 8GB DDR4 RAM@ 2133 MHz88

• HDD: WDCWD5000AZRZ-0 500GB, 64MB Cache, 5400rpm, 150 MB/s (Host to disk), 6GB/s89

(Buffer to Host), ~10 to 50 IOPS90

• 1000 MB/s ethernet connection91

26th March 2020 – 13:57 4



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

Table 1: Different compression algorithms and levels with their effect on reading and file size for the primary xAOD
test file.

Algorithm Level File size (B) Event rate (Hz)
lz4 1 8.756 × 109 63.0±1.1
lz4 3 8.756 × 109 62.3±0.8
lz4 5 7.674 × 109 67.3±1.1
lz4 7 7.597 × 109 67.5±0.8
lz4 9 7.556 × 109 68.1±1.2
zlib 1 7.381 × 109 58.7±0.6
zlib 3 7.268 × 109 59.6±0.7
zlib 5 7.030 × 109 59.4±0.7
zlib 7 6.896 × 109 60.5±0.8
zlib 9 6.782 × 109 61.1±0.8
lzma 1 6.203 × 109 15.4±0.0
lzma 3 6.149 × 109 15.6±0.0
lzma 5 5.978 × 109 15.5±0.1
lzma 7 5.901 × 109 15.6±0.0
lzma 9 5.901 × 109 15.5±0.0

2.1 Compression Algorithm & Level92

ROOT provides three compression algorithms: LZ4, ZLIB and LZMA. Each is offering increasingly93

strong compression at the cost of increasing compression- and decompression times for the same data. All94

three algorithms can be fine tuned via the compression level option, ranging from 1 to 9, where higher95

levels offer stronger compression. Compression times increase with higher compression levels as well, but96

decompression times are unaffected by design.97

To compare the effect of all three compression algorithms, all IParticleContainer branches are read for98

the first 2000 events in the primary xAOD test file.99

Table 1 gives a summary of the results, showing the impact on file size and reading speed (event rate and100

total walltime). All results are given as the mean value and its corresponding 1f standard deviation of 10101

repetitions to minimize the impact of system fluctuations.102

LZ4 is the fastest in reading, but results in the largest files. LZMA provides much better compression, at103

the cost of significantly slower reading speeds. ZLIB is between these two, although the reading speeds are104

closer to LZ4 than to LZMA. The gain in file size reduction is in all three cases larger between level 1 and105

5 than between level 5 and 9.106

Although there are small fluctuations in reading performance, decompression times are almost constant.107

The exception is LZ4, where level 1 to 3 is different from 4 to 9, since the “high compression” mode is108

used for levels above 3.109

Figure 1 shows the event throughput for all four tests file formats. Unfortunately, TOPQ1 and SUSY5 could110

not be compressed with LZ4, since they are produced with an older AthDerivation release that does not111

provide LZ4 compression yet. All three compression algorithms have the same characteristic behavior,112

26th March 2020 – 13:57 5



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

1 3 5 7 9

20

40

60

Compression Level

Ev
en

tR
at

e(
H

z)

LZ4
ZLIB

LZMA

(a) xAOD

1 3 5 7 9
50

100

150

Compression Level

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(b) TOPQ1

1 3 5 7 9

200

400

600

Compression Level

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(c) SUSY5

1 3 5 7 9
2,000

3,000

4,000

5,000

Compression Level

Ev
en

tR
at

e(
H

z)
LZ4
ZLIB

LZMA

(d) TRUTH3

Figure 1: Test results of reading 2000 events from primary xAOD, TOPQ1, SUSY5 and TRUTH3 (100000 events)
for different compression algorithms and levels. Values given as mean of 10 repetitions, error bars of 1f mostly too
small to be visible.

independent of how large the events are. Faster event throughput with smaller events is a direct result of113

streaming less data from disk.114

Figure 2 shows the file sizes for all four tests formats and different compression algorithms/levels. Again,115

LZ4 is not available for TOPQ1 and SUSY5 derivations. For TRUTH3, ZLIB behaves more like LZMA116

with respect to compression ratios (Fig. 2(d)) and more like LZ4 with respect to event throughput (Fig.117

1(d)), making it a very interesting choice for very small formats.118

In general, LZ4 should be considered for cases where fast reading is much more important than file size119

reduction. This is likely the case for relatively small derivations that are produced centrally and are used120

by many different Analysers. LZMA should be considered for the opposite case, providing the strongest121

compression at the cost of much slower decompression speeds. High compression levels, 5 or 7, should be122

considered in all three cases. The gain of a compression level of 9 flattens out for LZMA and LZ4, which123

makes it only relevant for cases where file size reduction is the most important metric.124

26th March 2020 – 13:57 6



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

1 3 5 7 9

6

7

8

9

Compression Level

Fi
le

siz
e(

G
B)

LZ4
ZLIB

LZMA

(a) xAOD

1 3 5 7 9
1.4

1.6

1.8

Level

Fi
le

siz
e(

G
B)

ZLIB
LZMA

(b) TOPQ1

1 3 5 7 9

0.5

0.55

0.6

0.65

Level

Fi
le

siz
e(

G
B)

ZLIB
LZMA

(c) SUSY5

1 3 5 7 9
0.4

0.5

0.6

0.7

0.8

Level

Fi
le

siz
e(

G
B)

LZ4
ZLIB

LZMA

(d) TRUTH3

Figure 2: File sizes for primary xAOD, TOPQ1, SUSY5 and TRUTH3 for different compression algorithms and
levels.

2.2 Autoflush125

ROOT offers the Autoflush option that specifies how large a single compression unit of a given TTree126

should be. Setting it to 0 disables the feature, values < 0 set a number of Bytes and > 0 set a number of127

events that are compressed as one unit. The current ATLAS default is 100 events for primary xAODs and128

10 MB for derivations.129

Defining a reasonably sized compression unit is important, since compression algorithms work more130

efficiently with more data to compress. Too large units on the other hand can be inefficient if only parts of131

the data are read, since the whole unit has to be decompressed for a single access.132

For this test we vary the Autoflush setting by number of events, ranging from 10 to 1000. This is done for133

all three compression algorithms and the four test file formats.134

Figure 3 shows that all four formats have a low event throughput for too small event numbers (≤ 50). Large135

formats, like the primary xAOD or TOPQ1, reach a plateau at around 100 events, which validates the136

current default for xAODs. The small TRUTH3 format reaches the plateau at around ≥ 200 events. All137

26th March 2020 – 13:57 7



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

10 100 1,000

20

40

60

Autoflush

Ev
en
tR
at
e(

H
z)

LZ4
ZLIB
LZMA

(a) xAOD

10 100 1,000

50

100

150

Autoflush

Ev
en
tR
at
e(

H
z)

ZLIB
LZMA

(b) TOPQ1

10 100 1,000

200

400

600

Autoflush

Ev
en
tR
at
e(

H
z)

ZLIB
LZMA

(c) SUSY5

10 100 1,000

2,000

4,000

Autoflush

Ev
en
tR
at
e(

H
z)

LZ4
ZLIB
LZMA

(d) TRUTH3

Figure 3: Test results of reading 2000 events from primary xAOD, TOPQ1, SUSY5 and TRUTH3 (100000 events)
for different Autoflush sizes. Values given as mean of 10 repetitions, error bars of 1f too small to be visible.

three compression algorithms show roughly the same scaling behavior with respect to the Autoflush setting,138

apart from already observed speed differences between the algorithms.139

Figure 4 shows how the file sizes of all four test formats scale with the Autoflush option. For all formats,140

larger compression units result in smaller files, since the compression algorithms can work more efficiently.141

The smallest file sizes are reached at around 200 events, except for TRUTH3, which reaches its smallest file142

size at 1000 events. Note that ZLIB is very efficient at compressing the file format with very small events.143

As observed before, it behaves more like LZMA than LZ4, while still being efficient at reading.144

Figure 5 shows that the memory footprint of decompressing the Autoflush units scales exponentially. Too145

small Autoflush values also result in a larger memory footprint if the event size is very small (cf. Fig 5(c)146

and 5(d)). In the case of TRUTH 3 (Figure 5(d)) the growing memory footprint for large Autoflush values147

is outside of the tested range. According to this, it is most important to not choose too large Autoflush148

values for file formats with large event sizes.149

While 100 Events for primary xAOD is a good default, the current default of 10 MB for derivations is150

too small. Large derivations like TOPQ1 have roughly 50 events in one compression unit with a 10 MB151

Autoflush and would benefit from a larger setting. Very small formats like TRUTH3 benefit from a much152

larger Autoflush size, which is why the default for derivation formats should still be set in MB. 20 MB153

26th March 2020 – 13:57 8



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

10 100 1,000
6

7

8

9

Autoflush

Fi
le
siz

e(
G

B)
LZ4
ZLIB
LZMA

(a) xAOD

10 100 1,000

1.5

2

Autoflush

Fi
le
siz

e(
G

B)

ZLIB
LZMA

(b) TOPQ1

10 100 1,000

0.5

0.6

0.7

0.8

Autoflush

Fi
le
siz

e(
G

B)

ZLIB
LZMA

(c) SUSY5

10 100 1,000

0.5

1

Autoflush

Fi
le
siz

e(
G

B)

LZ4
ZLIB
LZMA

(d) TRUTH3

Figure 4: File sizes for primary xAOD, TOPQ1, SUSY5 and TRUTH3 for different Autoflush sizes.

would correspond to roughly 175 events in the TOPQ1 case (assuming 170 kB per event) and 4000 events154

for the TRUTH3 format.155

2.3 Splitlevel156

For TTree branches with sub-branches, e.g. events with multiple objects per event, the Splitlevel option157

sets the depth until which sub-branches will be stored next to their parent. With a Splitlevel of 1, all first158

level sub-branches are split off. A Splitlevel of 2 means that the subbranches of subbranches are also stored159

separately. This goes until 99, where all objects are stored at the root of the TTree.160

Splitting the branches has an impact on serialization. For example, split sub-branches have individual161

buffers while reading instead of a single shared buffer.162

In this test we split all branches of the (D)xAOD test files and measure the impact on event rate and file163

size.164

Figure 6 shows the event rate for all four test formats with respect to different Splitlevels. There is no clear165

dependency for SUSY5 and TOPQ1. xAOD and TRUTH3 have the highest event rates for a Splitlevel of166

0.167

26th March 2020 – 13:57 9



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

10 100 1,000

2

4

6

Autoflush

M
em

or
yU

se
d_

m
ax

(G
B)

LZ4
ZLIB
LZMA

(a) xAOD

10 100 1,000
1.5

2

2.5

Autoflush

M
em

or
yU

se
d_

m
ax

(G
B)

ZLIB
LZMA

(b) TOPQ1

10 100 1,000

1.5

1.6

1.7

1.8

Autoflush

M
em

or
yU

se
d_

m
ax

(G
B)

ZLIB
LZMA

(c) SUSY5

10 100 1,000
1.3

1.4

1.5

Autoflush

M
em

or
yU

se
d_

m
ax

(G
B)

LZ4
ZLIB
LZMA

(d) TRUTH3

Figure 5: Memory usage while reading 2000 events from primary xAOD, TOPQ1, SUSY5 and TRUTH3 (100000
events) for different Autoflush sizes. Values given as mean of 10 repetitions, error is 1f.

Figure 7 shows how the test file sizes change with respect to the Splitlevel. All formats are smallest for a168

Splitlevel of 0. This is most dominant for xAOD and TRUTH3. The file size is constant, but larger for169

Splitlevels > 0.170

xAODs have a default Splitlevel of 0 for most branches. For derivations the default is 1 and following our171

results, we recommend to change the default for derivations to 0.172

2.4 TTreeCache173

ROOT provides a caching mechanism for reading from TTrees, called TTreeCache. It automatically174

recognizes which branches are accessed and pre-loads them when looping through all events. The175

TTreeCache size can be set to a value of −1, which corresponds to the exact size of the Autoflush setting.176

For the primary xAOD test file this is ≈ 100MB. The first # (variable) events are used by the TTreeCache177

to “learn” which branches should be pre-fetched while reading the following events.178

To test the impact of the TTreeCache on reading speeds, we vary the cache size and measure the event179

throughput when reading from spinning disk. For primary xAOD, we also set the “learn size” to 0 and 100180

(=Autoflush), to check if it has a strong influence on caching efficiency.181

26th March 2020 – 13:57 10



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

0 1 50 99

20

40

60

Splitlevel

Ev
en

tR
at

e(
H

z) LZ4
ZLIB

LZMA

(a) xAOD

0 1 50 99
50

100

150

Splitlevel

Ev
en

tR
at

e(
H

z) ZLIB
LZMA

(b) TOPQ1

0 1 50 99

200

400

600

Splitlevel

Ev
en

tR
at

e(
H

z) ZLIB
LZMA

(c) SUSY5

0 1 50 99

2,000

3,000

4,000

5,000

Splitlevel

Ev
en

tR
at

e(
H

z) LZ4
ZLIB

LZMA

(d) TRUTH3

Figure 6: Test results of reading 2000 events from primary xAOD, TOPQ1, SUSY5, TRUTH3 (100000 events) for
different splitlevels. Values given as mean of 10 repetitions, error bars of 1f too small to be visible.

Figure 8 shows that the TTreeCache can improve reading performance up to a certain point. For too small182

caches, e.g. below 50 MB, which corresponds to about half the size of the ATLAS default Autoflush setting183

for primary xAODs, the event throughput drops (cf. Fig 8(a)). Changing the number of events used for184

learning does not have a big impact on cache performance. The derivation test formats are read efficiently185

even with small TTreeCaches.186

Figure 9 shows that the number of reading operations is significantly larger for very small cache sizes. This187

is why a TTreeCache is most important when reading from sources with high latencies, e.g. from a network188

storage system.189

In a small test we found that a TTreeCache also removes the issue of reduced reading rates while reading190

branches in a different order from how they are stored on disk.191

To conclude, for all (D)xAODs we recommend to use the TTreeCache with the −1 option.192

26th March 2020 – 13:57 11



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

0 1 50 99

6.5

7

7.5

8

Splitlevel

Fi
le

siz
e(

G
B) LZ4

ZLIB
LZMA

(a) xAOD

0 1 50 99

1.5

1.6

1.7

Splitlevel

Fi
le

siz
e(

G
B) ZLIB

LZMA

(b) TOPQ1

0 1 50 99
0.5

0.55

0.6

Splitlevel

Fi
le

siz
e(

G
B) ZLIB

LZMA

(c) SUSY5

0 1 50 99
0.4

0.5

0.6

Splitlevel

Fi
le

siz
e(

G
B) LZ4

ZLIB
LZMA

(d) TRUTH3

Figure 7: Filesize of primary xAOD, TOPQ1, SUSY5, TRUTH3 for different splitlevels.

2.5 ROOT Multithreaded Branch Decompression193

ROOT provides the option to enable implicit multithreading, in which branches read from a TTree are194

decompressed in parallel.195

In a ROOT standalone version of the reading tests, all IParticleContainer branches are read from the196

(D)xAOD input files, with a varying number of threads.197

Figure 10 shows that reading LZMA compressed files do benefit from parallel branch decompression.198

Reading ZLIB and LZ4 compressed files benefit from parallel decompression as well, but event throughput199

decreases for higher number of threads. There is no improvement for more than 4 threads for primary200

xAOD (cf. Fig 10(a)), which corresponds to the number of physical cores of the machine. Either this201

process does not benefit from hyper threading or parallel branch decompression of xAODs has a bad202

thread-scaling behavior. For primary xAOD, all three compressed test files have ≈ 25% better event203

throughput, when using 4 threads to decompress the data.204

Parallel branch decompression for smaller derivations (Figures 10(b) to 10(d)) is only beneficial for LZMA205

compressed files. All ZLIB and LZ4 compressed DxAOD files lose performance if more than one thread is206

used.207

26th March 2020 – 13:57 12



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

50 100 150 200

20

40

60

TTreeCacheSize (MB)

Ev
en

tR
at

e(
H

z)

LZ4 - 0 ZLIB - 0
LZMA - 0 LZ4 - 100
ZLIB - 100 LZMA - 100

(a) xAOD

50 100 150 200
50

100

150

TTreeCacheSize (MB)

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(b) TOPQ1

50 100 150 200

200

400

600

TTreeCacheSize (MB)

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(c) SUSY5

50 100 150 200
2,000

3,000

4,000

5,000

TTreeCacheSize (MB)

Ev
en

tR
at

e(
H

z)
LZ4
ZLIB

LZMA

(d) TRUTH3

Figure 8: Test results of reading 2000 events from primary xAOD, TOPQ1, SUSY5 and TRUTH3 (100000 events)
for different TTreeCache sizes. Values given as mean of 3 repetitions, error bars of 1f too small to be visible. Figure
8(a) also shows results for a “learn entry” size of 0 and 100.

If decompression is a measurable or even limiting factor for a given ATLAS workflow, it can be beneficial208

to investigate ROOTs parallel branch decompression further. The xAOD reading code needs a revision209

with respect to multithreading, since occasional crashes and deadlocks have been observed.210

26th March 2020 – 13:57 13



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

20 40 60 80 100 120 140 160 180 200 220

0

0.5

1

1.5

2

·104

TTreeCacheSize (MB)

Re
ad

O
ps

LZ4 - 0
ZLIB - 0

LZMA - 0
LZ4 - 100
ZLIB - 100

LZMA - 100

Figure 9: Test results of reading 2000 events from primary xAOD for different TTreeCache sizes. Values given as
mean of 3 repetitions, error bars of 1f too small to be visible. The number given in the legend shows the used
TTreeCache learn entries for that measurement.

26th March 2020 – 13:57 14



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

1 2 3 4 5 6 7 8 9 10

20

40

60

80

Threads

Ev
en

tR
at

e(
H

z)

LZ4
ZLIB

LZMA

(a) xAOD

1 2 3 4 5 6 7 8 9 10
50

100

150

Threads

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(b) TOPQ1

1 2 3 4 5 6 7 8 9 10

200

300

Threads

Ev
en

tR
at

e(
H

z)

ZLIB
LZMA

(c) SUSY5

1 2 3 4 5 6 7 8 9 10
2,000

4,000

6,000

8,000

Threads

Ev
en

tR
at

e(
H

z)

LZ4
ZLIB

LZMA

(d) TRUTH3

Figure 10: Test results of reading 2000 events from primary xAOD, TOPQ1, SUSY5, TRUTH3 (100000 events) in
ROOT standalone implementation with a different number of threads. Values given as mean of 10 repetitions, error
is 1f.

26th March 2020 – 13:57 15



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

3 Conclusion211

During our studies we found multiple approaches to extend and improve our tests. These ideas are collected212

here to document useful starting points for future studies.213

There are modern compression algorithms that potentially perform better than LZ4, ZLIB and LZMA.214

Some are optimized implementations of the existing algorithms, e.g. cloudflare ZLIB[6], LZHAM[7],215

vectorized LZ4 by Intel[8]. Two new approaches are proio−varint[9] and zstd[10], where both could lead216

to better compression ratios while maintaining/improving reading speeds. In order to test these algorithms,217

they have to be implemented in ROOT itself, which possibly requires joined effort between ATLAS and218

the ROOT team.219

Further studies with branch specific settings (e.g. Autoflush, Splitlevel) should be done for the largest #220

(e.g. 10) branches, which could lead to further compression and reading speed improvements.221

Tests with varying TTreeCache sizes while reading from EOS and HDD could lead to slightly better222

caching behavior, when reading from network resources.223

All of the current tests ran on the same hardware. Future tests could try to isolate hardware dependencies,224

such that optimization towards the “average” hardware used in ATLAS are possible.225

We did not profile AthDerivation jobs during in our studies. Such measurements would be a test for reading226

xAODs and writing derivations at the same time. This approach could give additional information about227

ideal compression algorithms, levels and Autoflush settings for xAODs and DxAODs.228

It would be interesting to develop a cost model of available CPU time and disk space to find an optimal229

balance point between occupied disk space and necessary CPU time for decompression for files used in230

common ATLAS workflows (Reconstruction, Derivation, Analysis). Such a model would weigh CPU time231

to (de-)compress a file against the time it occupies a certain amount of disk space, including how often it is232

used and possibly reproduced.233

3.1 Summarized Recommendations234

This study finds that LZ4 compression is best suited for workflows that require fast reading, while LZMA235

compression is best to minimize file sizes. ZLIB offers an intermediate solution to fine tune the balance236

between these two metrics and its performing best for formats with very small event sizes.237

The default Autoflush of 100 events is a good setting for primary xAODs. The current default of 10 MB238

for derivations is too small for larger derivations (e.g. with 170 kB per event) and it should be doubled to239

20 MB.240

The default Splitlevel of 1 for derivations should be changed to 0 to reduce file sizes and slightly improve241

reading rates.242

While reading, a TTreeCache set to −1 should be used to set its size to be equal to the Autoflush. This is243

most important if files are read through a network or other high latency file systems.244

ROOTs parallel branch decompression is very beneficial for large (D)xAOD formats in combination with245

LZMA. In some situations even ZLIB and LZ4 compressed input files can be faster decompressed with246

multiple threads.247

26th March 2020 – 13:57 16



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ATLAS DRAFT

References248

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,249

JINST 3 (2008) S08003.250

[2] J. Elmsheuser et al., Evolution of the ATLAS analysis model for Run-3 and prospects for HL-LHC,251

(2019), url: https://cds.cern.ch/record/2696416.252

[3] J. Elmsheuser et al., Evolution of the ATLAS analysis model for Run-3 and prospects for HL-LHC,253

tech. rep. ATL-SOFT-PROC-2020-002, CERN, 2020,254

url: https://cds.cern.ch/record/2708664.255

[4] A. Buckley et al., Implementation of the ATLAS Run 2 event data model,256

tech. rep. ATL-SOFT-PROC-2015-003. 7, CERN, 2015,257

url: https://cds.cern.ch/record/2014150.258

[5] ROOT TTree Documentation,259

url: https://root.cern.ch/doc/master/classTTree.html (visited on 18/12/2018).260

[6] Github: zlib, url: https://github.com/cloudflare/zlib (visited on 26/03/2020).261

[7] Github: LZHAM codec,262

url: https://github.com/richgel999/lzham_codec (visited on 26/03/2020).263

[8] Building a faster LZ4 with Intel® Integrated Performance Primitives,264

url: https://software.intel.com/en-us/articles/building-a-faster-lz4-with-265

intel-integrated-performance-primitives (visited on 26/03/2020).266

[9] D. Blyth, J. Alcaraz, S. Binet and S. Chekanov,267

ProIO: An event-based I/O stream format for protobuf messages,268

Computer Physics Communications 241 (2019) 98, issn: 0010-4655,269

url: http://dx.doi.org/10.1016/j.cpc.2019.03.018.270

[10] Github: zstd, url: https://github.com/facebook/zstd (visited on 26/03/2020).271

26th March 2020 – 13:57 17

http://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/2696416
https://cds.cern.ch/record/2708664
https://cds.cern.ch/record/2014150
https://root.cern.ch/doc/master/classTTree.html
https://github.com/cloudflare/zlib
https://github.com/richgel999/lzham_codec
https://software.intel.com/en-us/articles/building-a-faster-lz4-with-intel-integrated-performance-primitives
https://software.intel.com/en-us/articles/building-a-faster-lz4-with-intel-integrated-performance-primitives
https://software.intel.com/en-us/articles/building-a-faster-lz4-with-intel-integrated-performance-primitives
http://dx.doi.org/10.1016/j.cpc.2019.03.018
http://dx.doi.org/10.1016/j.cpc.2019.03.018
https://github.com/facebook/zstd

	1 Introduction
	2 Measurements
	2.1 Compression Algorithm & Level
	2.2 Autoflush
	2.3 Splitlevel
	2.4 TTreeCache
	2.5 ROOT Multithreaded Branch Decompression

	3 Conclusion
	3.1 Summarized Recommendations


