# Precise predictions for double-Higgs production via vector-boson fusion

#### Mathieu PELLEN

Cavendish Laboratory, University of Cambridge

Based on arXiv:2005.13341

In Collaboration with: Frédéric A. Dreyer, Alexander Karlberg, Jean-Nicolas Lang

> LHC-HH Subgroup Meeting 7<sup>th</sup> of July 2020





European Research Council

<u>LHC</u>: Great tool to probe fundamental interactions at high energies  $\rightarrow$  Great to measure Higgs bosons



• Main discovery of the LHC!

 $\rightarrow$  focus on the measurements of its properties

Mathieu PELLEN

Precise predictions for double-Higgs production via vector-boson fusion



#### $\rightarrow$ Large variety of Higgs processes ... .. with very different phenomenology!

Mathieu PELLEN

Precise predictions for double-Higgs production via vector-boson fusion

## VBF HH at NNLO QCD + NLO EW

 $\rightarrow$  Higgs self-coupling + extra handle with tagging jets



In [Dreyer, Karlberg, Lang, MP; 2005.13341]:

- Full NLO QCD + EW (new) from MOCANLO+RECOLA [Actis et al.; 1605.01090]
- NNLO QCD corrections [Dreyer, Karlberg; 1811.07918] from PROVBFHH
- Non-factorisable corrections at NNLO [Dreyer, Karlberg, Tancredi; 2005.11334]  $\rightarrow$  Frédéric's talk

Already available:

- NLO QCD + PS [Frederix et al.; 1401.7340]
- N<sup>3</sup>LO QCD (inclusive) [Dreyer, Karlberg; 1811.07906]

#### Double Higgs production via VBF at the LHC

# $pp \to HHjj$

• LO at  $\mathcal{O}(\alpha^4)$ In addition to VBF contributions: pp  $\rightarrow$  VHH  $\rightarrow$  HHjj (Higgs-Strahlung contributions)  $\rightarrow$  pp  $\rightarrow$  HHjj = VBF + VHH

$$\mathcal{K}_{\mathrm{full/VBF}} = rac{d\sigma_{\mathrm{LO}}^{\mathrm{full}}}{d\sigma_{\mathrm{LO}}^{\mathrm{VBF}}}$$

#### Double Higgs production via VBF at the LHC

• Full NLO QCD at  $\mathcal{O}(\alpha_{s}\alpha^{4})$  $\rightarrow$  all real QCD radiations and all virtual diagrams included

• NNLO QCD in VBF approximation at  $\mathcal{O}\left(\alpha_s^2 \alpha^4\right)$  $\rightarrow$  does not include gluon exchange between quark lines

 $\sigma_{\rm NNLO \ QCD} = \sigma_{\rm LO}^{\rm full} + \delta_{\rm NLO \ QCD}^{\rm full} + \mathcal{K}_{\rm full/VBF} \delta_{\rm NNLO \ QCD}^{\rm VBF},$ 

• NLO EW at  $\mathcal{O}\left(\alpha^{4}\right)$ 

all real photon corrections and virtual diagrams included photon-induced contributions neglected

$$\sigma_{\rm NNLO \ QCD \times NLO \ EW} = \sigma_{\rm NNLO \ QCD} \left( 1 + \frac{\delta_{\rm NLO \ EW}^{\rm full}}{\sigma_{\rm LO}^{\rm full}} \right)$$

 $\rightarrow$  as in the Higgs cross-section working group report for VBF

Mathieu PELLEN

#### Set-up

#### Input:

- LHC at  $\sqrt{s} = 14 \,\mathrm{TeV}$
- PDF: NNPDF31\_nnlo\_as\_0118\_luxqed [NNPDF; 1712.07053]

• 
$$\mu = \sqrt{\frac{M_{\rm H}}{2}} \sqrt{\left(\frac{M_{\rm H}}{2}\right)^2 + p_{\rm T,HH}^2}$$

#### Event selection:

- $p_{T,j} > 25 \,\text{GeV}$  and  $|y_j| < 4.5$
- $m_{j_1j_2} > 600 \text{ GeV}$  and  $|y_{j_1} y_{j_2}| > 4.5$
- No cuts on the Higgs bosons

 $\rightarrow$  Exclusive cuts to ensure reliable VBF approximation

| $\sigma_{ m LO}^{ m full}$       | $\delta^{\mathrm{full}}_{\mathrm{NLO~QCD}}$ | $\delta_{\rm NNLO~QCD}^{\rm VBF}$ | $\delta^{\rm full}_{\rm NLO~EW}$ | $\sigma_{\rm NNLO~QCD \times NLO~EW}$ [fb] |
|----------------------------------|---------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------|
| $0.78444(9)^{+0.0825}_{-0.0694}$ | -0.07110(13)                                | -0.0115(5)                        | -0.0476(2)                       | $0.6684(5)^{+0.002}_{-0.0004}$             |
| +10.5%<br>-8.8%                  | -9.1%                                       | -1.5%                             | -6.1%                            | $-14.8\%^{+0.3\%}_{-0.06\%}$               |

- Non-factorisable corrections: 0.01237(2) i.e. +1.7%
- NLO EW corrections of the order of NLO QCD and larger than NNLO QCD
  - $\rightarrow$  Typical size of EW corrections
  - (-5% for VBF [Ciccolini, Denner, Dittmaier; 0710.4749])
  - $\rightarrow$  As opposed to intrinsic large EW corrections in VBS

[Biedermann, Denner, MP; 1611.02951]

• Measurable at the High-luminosity LHC

## Differential distributions (1)



- Effect of VBF approximation up to 20%
- EW Sudakov logarithms in tails of distributions: -25%

## Differential distributions (2)



- Important distributions for VBF:  $m_{ii}$  and  $|\Delta y_{jj}|$
- Corrections at the level of 10/20%
- More distributions in [Dreyer, Karlberg, Lang, MP; 2005.13341]

#### NNLO QCD + NLO EW for VBF HH [Dreyer, Karlberg, Lang, MP; 2005.13341]

- State of the art predictions at fixed order
- Quantifies VBF approximation
- NLO EW corrections of the order of the QCD ones

#### Thank you