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Today’s talk

1. Brieft untolding primer
2. The hyper challenge
3. Reweighting (DCTR)
4. OmniFold T
5. Plans for the future »

Not to scale!



Measurements in HEP ; 3

The key challenge is that there
IS a detector in the way!

Image inspired by JHEP 02 (2009) 007

We need to remove
detector effects in
order to compare

with theory. We call

this Unfolding.




Measurements in HEP

We need to remove
detector effects in
order to compare

with theory. We call

this Unfolding.

Theic Typical situation:

A We measure a

histogram and
want to know the
distribution of x
prior to detector
distortions.
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What does unfolding do?

In general, unfolding needs to correct for interrelated eftects:

e Acceptance and efficiency

= Particles produced may not be measured
e Detector noise

= Particles measured may not be from real particles
e Background processes

= |f you want to measure process X, need to remove Y
e Combinatorics

= |t N particles, chance that detector can change order
e Detector distortions

= Bijas and resolution effects



lllustrative toy example

m = Rt m = measured: t = true

We usually call R the “response matrix” because
m and t are binned (and thus vectors).

In HEP, we (usually) get R from extremely
detailed detector simulations.



lllustrative toy example

m = Rt m = measured: t = true

What you want to do is to define t = R-' m.



lllustrative toy example

m = Rt m = measured: t = true

What you want to do is to define t = R-' m.

In the next slides, | hope to convince
you that this is not usually a good idea.



lllustrative toy example

Consider this case, where 0 < € < (0.5



lllustrative toy example

1 —€ €
= ( e 11— e)
Var(R™'m) o< 1/Det(R) =1 — 2¢

Statistical uncertainty blows up as € = 0.5



Same idea, more bins
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Unfolding by Matrix Inversion

«10° 1 million training/testing x10°
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Stat. uncertainty is large and there is a
bias when training dataset is too small.



The HEP solution

Our solution is to do regularized matrix inversion.

here are two main technigues that we use:

“Singular Value

lterative Bayesian Unfolding Decomposition (SVD) Unfolding”

05 = R=USV?" -

9T Pr(mylts) - Pr(t) 5

U, V, orthogonal, S diagonal & non-negative D
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Nucl. Inst. Meth. A 362 (1995) 487 Nucl. Inst. Meth. A 372 (1995) 469

Main tool: RooUnfold (ROOT-based C++ code)



The HEP solution

Note: regularized matrix inversion depends
on unphysical irregularization parameters

One choses parameters to tradeoff bias and uncertainty.

IBU Unfolding SVD Unfolding

- depend on prior - depend on t

- depends on #
of iterations

(one can show that this converged to
the maximum likelihood estimator)



Example: lterative Bayesian Unfolding
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Unfolding in action

Phys. Rev. Lett. 121 (2018) 152002

Analysis Team: T. Eifert, C. Herwig, BPN
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Unfolding in action

These quantum effects were then used to make the most
precise direct measurement of the top quark width

Phys. Rev. Lett. 122 (2019) 231803
C. Herwig, T. Jezo, BPN
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Can we measure the all hadrons (not just 1D histograms)?



A hyper challenge

Key challenge and opportunity:
& hyper spectral data

Image inspired by JHEP 02 (2009) 007

Not to scale!




A hyper challenge

Key challenge and opportunity:
& hyper spectral data

We detect these
particles with
O(100 M)
readout channels




Can we measure the all hadrons (not just 1D histograms)?



Full phase space unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

Want this |Measure this




Full phase space unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !



Full phase space unfolding

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)

true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !

However: we have simulators that we can
use to sample from p(meas. | true)

— Simulation-based (likelihood-free) inference



'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.



Reweighting

'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it is statistically identical to dataset 2.



Reweighting

'll brietly show you one solution to give you a
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it is statistically identical to dataset 2.

What it we don’t (and can’t easily) know g and p?



Classification for reweighting

Fact: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)




Classification for reweighting

Particularly useful for particle physics, where collisions may
produce a variable # of particles which are interchangeable

Image: Linear Collider Detector Project



Example: electron-positron collisions

Learn a classifier on the full observable phase
space (momenta + particle tflavor) and then
check with some standard observables.

Our events have a variable number of particles & due to
guantum mechanics, are permutation invariant. Thus, we
use a deep-sets variant called particle flow networks.

PFNs: Komiske, Metod
Deep sets: Zaheer et a

iev, Thaler, JHEP 01 (2019) 121

, NIPS 2017



Example: electron-positron collisions

f

~ Just to stress: this gives you a
- new simulation with all the 4-
vectors that Is statistically
indistinguishable.



Classification for reweighting

Reweight the full phase space and then

check for various binned 1D observables.
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Achieving precision
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one-dimensional
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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Unfold by iterating: OmniFold
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BPN, J. Thaler, PRL 124 (2020) 182001



Unfold by iterating: OmniFold
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“Truth”

Two-

cluster-like

One- -
cluster-like -

"LHC simulation

0.

2 0.4
N-subjettiness Ratio

Consider this
observable, which
characterizes the

substructure
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Normalized Cross Section
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OmniFold is:

- Unbinned

- Maximum likelihood

- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features
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OmniFold is:

- Unbinned

- Maximum likelihood

- Full phase space (compute observables post-facto)
- Improves the resolution from auxiliary features

extreme example: ~ measured |true = true + X
X ~N(p,0)

If you control for X (=auxiliary feature), response is a delta-function!
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We have started an
effort to perform an
OmniFold in the
/+]ets final state.
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LHC simulation

joined ATLAS as a short , bop
term associate to I
collaborate on this project. 0.0

0.2 0.4 0.6 0.8 1.0

N-subjettiness Ratio 750~ ")

Exciting challenges (just to name a few): uncertainties” How

to present the result? (unbinned

+ high-dimensional)



Conclusions and outlook

Deep learning has a great
potential to enhance,
accelerate, and
empower HEP analyses

Today, | only spoke about
unfolding, but there is great
potential in other areas as well.

The full phase space of our experiments is now
explorable with deep learning ... it is an exciting time to
be the pioneers In this hypervariate phase space !






Full phase space unfolding: OmniFold

N

Emaly Dickinson, #975

The Mountain sat upon the Plain
In his tremendous Chair —

His observation omnifold,

His inquest, everywhere —

A. Andreassen, E. Metodiev, P. Komiske,
BPN, J. Thaler, 1911.09107

The Seasons played around his knees
Like Children round a sire —
Grandfather of the Days is He

Of Dawn, the Ancestor —



Pythia versus Herwig

No hyper-parameter tuning - out of the box!
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Pythia versus Herwig

No hyper-parameter tuning - out of the box!
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