LHCb RICH Run4 FE

Introduction

- Run4 module concept
- **Timing measurements**
- **TDC** requirements
- **Readout integration**

Summary of quantities

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031			2038	Ţ
	Run	2	L	S2		Ru	n 3		l	_S3		R	un 4		LS4	Rı	un 5 - 6	6	
CERN	LHC				13 TeV				14 TeV HL-LHC										
<i>Lнср</i>	4×10 ³² cr 9 fb ⁻	m ⁻² s ⁻¹	Upgı	rade la		2×10 ³ >2	³ cm ⁻² s ⁻¹ 25 fb ⁻¹					2×1(>) ³³ cm ⁻² s ⁻ 50 fb ⁻¹	-1	Upgr. II	1.5	× 10 ³⁴ cm > 300 fb ⁻	⁻² S ⁻¹	

LH

LHCb RICH from Run3 to Run5

- Detector occupancy will incease significantly in future
- PID performance will degrade unless...
- Use photon arrival time
- RICH has excellent intrinsic timing characteristics and will be further optimised in future
- We want to exploit this in future upgrades

Run3 to Run5 (cont.)

- Timing measurements with Run3 electronics are encouraging
- Example ToA vs charge: Current FE ASIC (CLARO) + Kintex7, injected test pulse
- Expect to see benefits already in Run3 (3ns gating)
- We want to take the next step for Run4 (300ps photon ToA measurement)
- Further improvement with new sensors from Run5 (SiPM, MCP, other...)

Notes:

- Channel-to-channel time variation is likely due to FPGA propagation delay and not a property of the CLARO.
- Can be compensated in the FPGA for Run3.
- Coarse timewalk correction can be applied in FPGA.

Photon sensor module

Timing measurements - Run3 module

- Measure ToA and ToT by using test pulse & scanning clock phase
- Measurement conditions similar to having TDC located on DB but use FPGA to capture data
- Single-ended signalling, 3 connectors, ~8cm PCB traces
- 48ps scan step size (using GBTX phase-programmable clock)
- \sim 70 channels firing at almost but not precisely the same time
- Leading edge 0-100% in two steps for 3.7 Me- input charge

TDC considerations

- Run4 timing limited by MAPMT transit time spread (300ps FWHM)
- ToA and ToT required
- Precision requirements relatively modest (for Run4)
- Bandwidth requirement will be a strong driver of the system cost
- Need cost efficiency over wide range of occupancies
 - Low: cost optimisations possible by using 8-bit output mode to reduce the number of data links)
 - High: active channels limited by output bandwidth
- Radiation hardness
 - Validate by irradiations
- Compatibility of data format with LHCb readout to be addressed

Readout considerations

- Data transport will use IpGBT with VTRX+
- Maximum picoTDC output bandwidth roughly the same as lpGBT 10Gbs FEC5 mode
- IO compatibility between picoTDC and IpGBT looks OK
 - Compatible electrical differential standards
 - Compatible IO rate
- Mismatch in bus width
 - picoTDC 32 differential outputs
 - IpGBT 28 differential inputs
- In high occupancy region, 64 channels will generate twice bandwidth limit of picoTDC
- In low occupancy region the bandwidth capability will be heavily underused in 32bit output mode
- Use different readout modularity in different occupancy regions

Estimates of quantities for Run4

- Define occupancy regions
 - High: where limited by picoTDC bandwidth
 - Intermediate: if necessary
 - Low: where 8-bit picoTDC output mode sufficient

Readout "unit cell"							
	MAPMT (64ch)	CLARO/FastIC	TDC	lpGBT			
High	1	8/2	2	2			
Intermediate	1	8/2	1	1			
Low	3	24/6	3	1			

Quantities (excl. spares/prototypes)							
High/Low	3%/97%	5%/95%	10%/90%				
FastIC	6176	6176	6176				
picoTDC	3141	3242	3397				
lpGBT	1171	1286	1544				

Summary

- Uses existing or nearly existing elements
- Looks possible to meet Run4 timing requirements
- Total number of links less than current system because of zero-suppression
- Component count mostly similar to existing system but may be more challenging in high occupancy region
- Radiation tolerance to be addressed (we may avoid use of FPGAs but need to evaluate FastIC & TDC)
- Power domains no more complex than now
- Heat management will need review
- Downstream data transport compatibility with LHCb needs to be addressed

Quantities

Approximate production quantities						
High/Low	3%/97%	5%/95%	10%/90%			
FastIC	6176	6176	6176			
picoTDC	3141	3242	3397			
IpGBT	1171	1286	1544			

Notes:

- Production requirements are intended only for forward planning estimates and should not be taken as a request at this stage.
- FastIC and picoTDC quantities not a strong function of assumptions about occupancy
- IpGBT caveat: the 32/28 IO mismatch not accounted for in the table. Might require significantly more IpGBT

Prototyping quantities					
FastIC (8 channel)	20 + 150 (See Note 1)				
picoTDC (64 channel)	25				

1) 20 early samples (packaged). We also have an interest in a small number of bare die. Additional 150 after validation of first samples.