LHC Higgs Cross Section Working Group:

Vector Boson Fusion

Sinead Farrington University of Oxford

Co-contacts: A. Denner, C. Hackstein, D. Rebuzzi, C. Oleari

VBF Process

Vector boson fusion

- Second to gg fusion in LHC Higgs production
- Important in low mass region
- Distinctive signature

- s-channel shares same initial and final states \rightarrow interference
 - Some of the calculations include this effect
 - Typical analysis cuts minimse this contribution

The Aim

From Reisaburo Tanaka:

- "Get the first complete set of inclusive Higgs cross sections at 7 TeV with different p.d.f. sets"
- 2) "Come to agreement on the central values together with scale and PDF+ α_s uncertainties with PDF envelope method if any"

Calculations / Generators

• Process is pure EW at LO

- QED corrections calculated at NLO ~ 5-10%
- QCD corrections calculated at NNLO ~5-10%
- Codes:
- λ · HAWK
 - NLO QCD and EW corrections
 - s and t channels and interference between them
- ★ VBFNLO
 - NLO QCD and EW (soon) corrections
 - t channel only
 - VBFNNLO (See previous talk for details)
 - NNLO QCD
 - t channel only
 - Pythia/Herwig
 - t channel only, LO
 - Sherpa

• s and t channel, LO

The Results

• Some notes on the results shown today

- Inclusive cross sections at $\sqrt{s}=7TeV$
 - LHC input parameters used
 - No kinematic cuts applied
 - Used recommended mass range and binning
- Several configurations of EW/QCD corrections, s-channel/t-channel
- Cross sections calculated for several p.d.f.'s
 - P.d.f. error treatment does not yet include α_s errors

NNPDF prescription:

$$\langle \mathcal{F}[f(x)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}[f^{(k)(net)}(x)]$$

 $\sigma_{\mathcal{F}[f(x)]} = \sqrt{\langle \mathcal{F}[f(x)]^2 \rangle - \langle \mathcal{F}[f(x)] \rangle^2}$

Will show comparisons of HAWK/VBFNLO

5

• "Like measuring the width of a valley from the displacement of a flock of sheep..."

Sinead Farrington, University of Oxford

VBFNLO

- Implements NLO QCD corrections
- t-channel only
- Developments
 - Improved phase space treatment to allow zero jet pt calculations
 - NLO EW corrections available soon
 - Scale variation studies available soon

VBFNLO Results

- Cross sections evaluated for CTEQ66 / MSTW2008 / NNPDF2.0
 - Using each set's α_s value; μ_R , μ_F =W mass
 - Calculation robust against p.d.f. variation
 - Used 100 NNPDF replica sets

VBFNLO Results

- Cross sections evaluated for CTEQ66 / MSTW2008 / NNPDF2.0
 - Using each set's α_s value, renormalisation scale =W mass
 - Calculation robust against p.d.f. variation
 - Used 100 NNPDF replica sets

p.d.f. Percentage errors

MSTW errors ~ NNPDF Errors

CTEQ errors larger

 Expect VBF process to have small p.d.f. uncertainty since probing x~10⁻² – 10⁻¹:

- α_s errors: Evaluated cross sections of CTEQ / MSTW / NNPDF with one another's α_s value
 - Largest error was ~1% x p.d.f error

HAWK

- Implements NLO QCD and EW corrections
- s and t channels
- Developments:
 - Version 1.1 released 10th June
 - Production of off-shell Higgs boson
 - Higgs invariant mass distributed according to Breit-Wigner
 - Option to decay isotropically into pair of singlets
 - Used to mimic any two body decay e.g. $H \rightarrow \gamma \gamma$
 - Required input: Higgs decay width; branching ratio into singlets
 - Cuts on decay singlets possible
 - Gauge invariance requires on-shell projection of matrix element in EW corrections
 - Not required for QCD LO/NLO corrections

HAWK Developments (cont'd)

- Improved PDF error estimation
 - Simultaneous evaluation of cross section for all members of a p.d.f. set
 - Evaluation of error set of 40 p.d.f.'s only ~ doubles run time compared to running central value p.d.f. only for all LHgrid sets
 - Not yet supported for distributions but easy to implement if needed
 - For *LHpdf sets repeated initialisation kills improvements

Effect of EW corrections at NLO

IVERO

~5% decrease in cross section for low masses

Effect of s-channel inclusion

~100% increase for low masses (<400GeV)

Effect of EW corrections at NLO and s-channel

HAWK Results

• Similar errors to those in VBFNLO

- MSTW central values normalised to CTEQ central values
- MSTW and CTEQ determinations agree within p.d.f. errors

HAWK / VBFNLO Comparison, MSTW

- HAWK calculated with no EW corrections, no schannel
 - Agreement to ~0.5%

Sinead Farrington, University of Oxford

HAWK / VBFNLO Comparison, CTEQ

- HAWK calculated with no EW corrections, no schannel
 - Agreement to ~0.5%

Sinead Farrington, University of Oxford

Summary

VBFNLO and HAWK calculations performed

- Uniform input parameters, cuts, mass binnings
- NNPDF, MSTW, CTEQ p.d.f. errors evaluated
 - α_s errors estimated (though not yet according to recommendation)
- Tables of these calculations are on the sharepoint
- Excellent agreement between VBFNLO and HAWK without schannel or EW corrections
- More improvements in the pipeline from the packages
- VBFNNLO comparisons beginning

To do...

- Evaluate α_s errors with full prescription
- Evaluate renormalisation scale errors
- Finalise comparison between
 VBFNNLO/VBFNLO/HAWK
- Move to exclusive channels
- Consider theoretical errors on SM backgrounds

