Breakdown studies with the Pulsed DC Systems: Optimizing the pulsing parameters & Results from He irradiation

<u>A. Saressalo</u>, A. Kilpeläinen, A. Kyritsakis, F. Djurabekova

I. Profatilova, R. Peacock, J. Paskiewicz L. Millar, S. Calatroni, W. Wuensch

anton.saressalo@helsinki.fi

RF Development Meeting, July 15th 2020

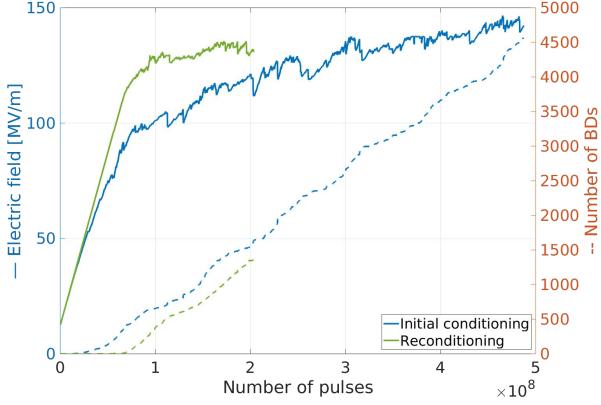
Contents

- 1. Motivation: DC experiments to understand BD behaviour
- 2. Pulsed DC Systems: Small gap breakdown generation with Cu electrodes
- 3. **Optimizing the pulsing parameters:** Effect of pauses between pulses
- 4. **He irradiation:** Trying to nucleate BDs with subsurface voids
- 5. Conclusions

Motivation

Breakdowns limit the efficiency of the Compact LInear Collider

Photo: CERN

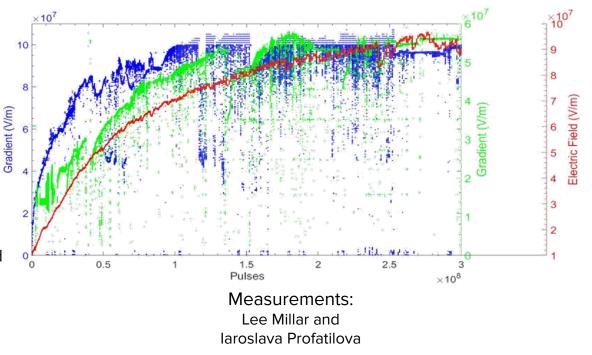

- Colliding electrons and positrons
- Linear accelerator built in stages
 - 380 GeV / 11 km x 2 ⇒ 70 MV/m
 - Ο...
 - 3 TeV / 50 km x 2 ⇒ 120 MV/m

• Copper accelerating structures in vacuum @ room temperature

⇒ Breakdowns

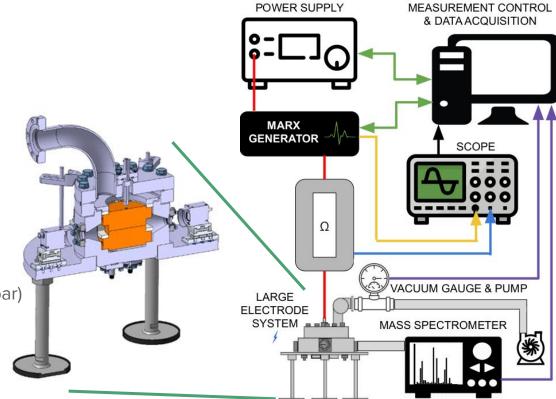
Copper requires conditioning to endure breakdowns


- Pristine electrodes vulnerable to BDs already at small fields
- After ~5x10⁸ pulses & ~5000 BDs,
 BD field can be 5 times higher
- Long and short term conditioning?



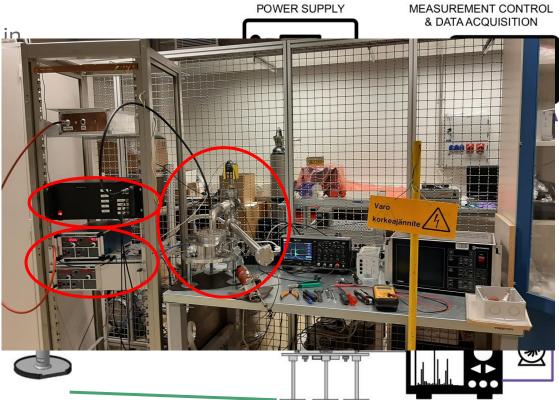
Faster conditioning with DC compared to RF

- Conditioning curves similar between Sbox, Xbox3 and Pulsed DC LES
- Huge difference in time scales
- Sbox @ 25 Hz: 4 months
- Xbox @ 200 Hz: 2 months
- Pulsed DC LES @ 2 kHz: 3.5 days
- Pulsed DC System much smaller and simpler to operate compared to Xboxes

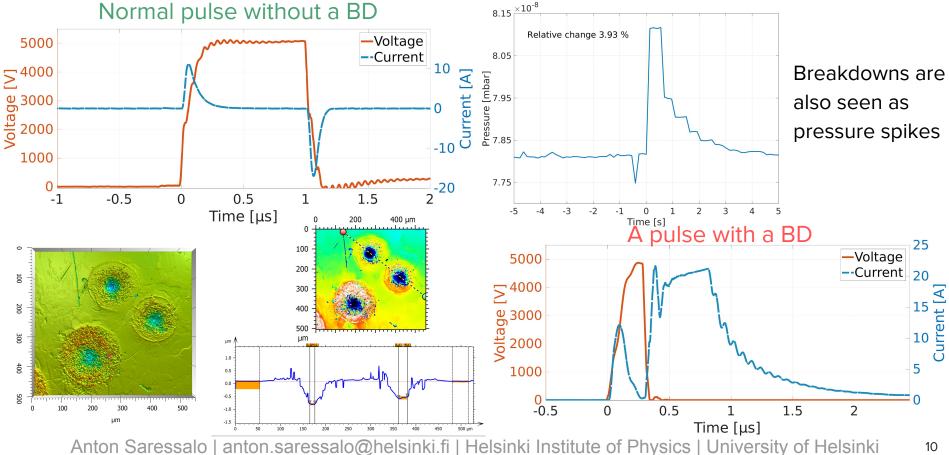

Experimental setup: Pulsed DC Systems

8

Pulsed DC Systems

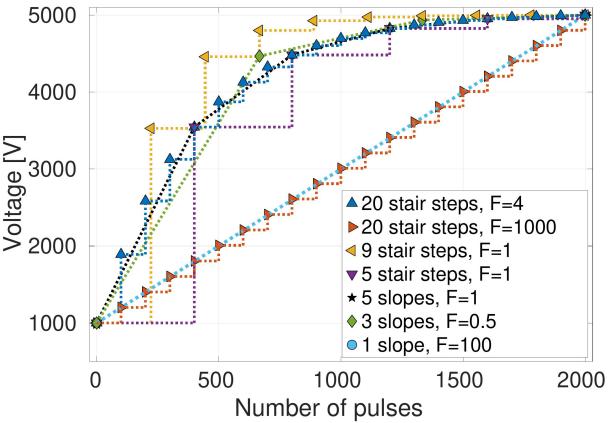

- Similar systems at CERN and in Helsinki, also one in Uppsala
- Cu electrodes
 - \circ 40-60 mm contact diameter
 - \circ 40-60 μm gap
- Short DC pulses
 - Electric fields up to 150 MV/m
 - 1 µs pulses @ 2 kHz
 - (near) Ultra High Vacuum (< 10⁻⁷ mbar)
 - Room temperature
 - ~ 1000 BDs / 10⁸ pulses per day

Pulsed DC systems


*

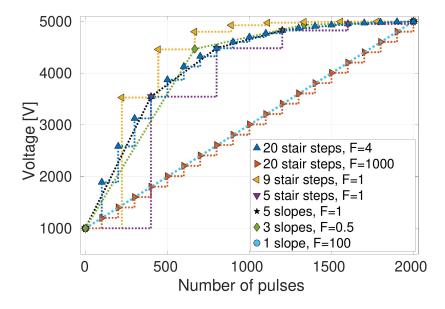
- Similar systems at CERN and in Helsinki, also one in Uppsala
- Cu electrodes
 - \circ 40-60 mm contact diameter
 - \circ 40-60 μm gap
- Short DC pulses
 - \circ ~ Electric fields up to 150 MV/m ~
 - ο 1 μs pulses @ 2 kHz
 - Ultra High Vacuum (< 10⁻⁷ mbar)
 - Room temperature
 - ~ 1000 BDs / 10⁸ pulses per day

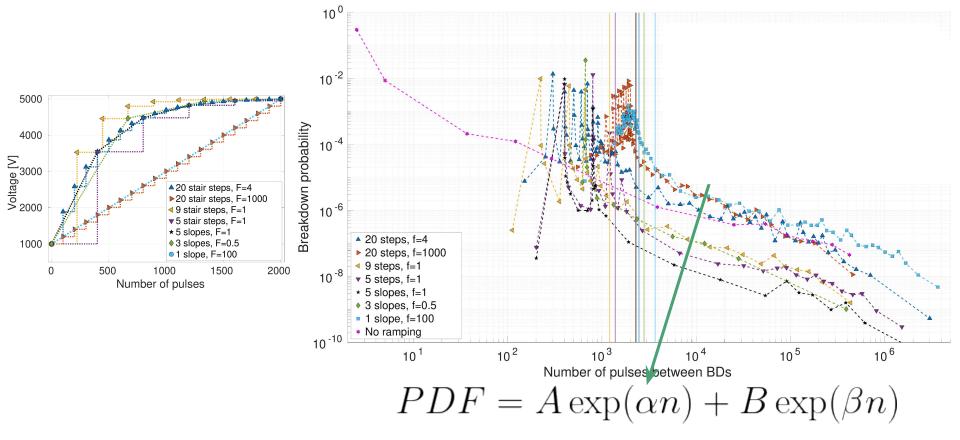
Pulse shapes: BDs are detected from current peaks 💥



Optimizing the pulsing parameters

Voltage recovery after BDs - "ramping"

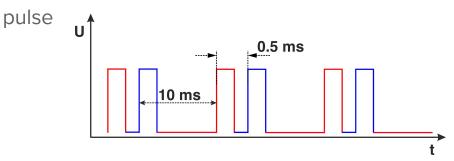

- "Ultra-short term conditioning"
- Voltage is ramped up from one fifth to the target value over 2000 pulses
- But the ramping itself increases BD probability
- Why? And how to ramp up causing minimum secondary BDs



Ramping scenario comparison

Scenario		Total BDR	Secondary BD %	BD serie length
	Steps, 20 steps, F=4	1.78E-05	70	3.3 ± 0.1
	Steps, 20 steps, F=1000	7.68E-05	82	4.3 ± 0.2
	Steps, 9 steps, F=1	8.18E-05	88	7.4 ± 0.6
	Steps, 5 steps, F=1	2.05E-05	84	5.3 ± 0.4
\star	Slopes, 5 slopes, F=1	3.37E-05	90	10.6 ± 0.8
٠	Slopes, 3 slopes, F=0.5	2.98E-04	96	20.4 ± 1.1
	Slopes, 1 slope, F=100	5.86E-06	67	3.1 ± 0.1
	No ramping	9.60E-05	94	15.3 ± 1.3

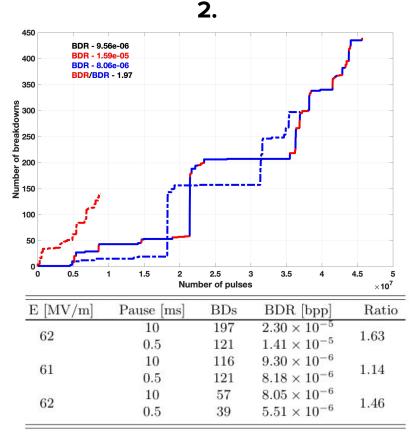
Ramping affects BD probability


Effect of the repetition rate

- What is the optimal pulsing frequency?
- Marx generator allows reprates up to 6 kHz

3 experiments:

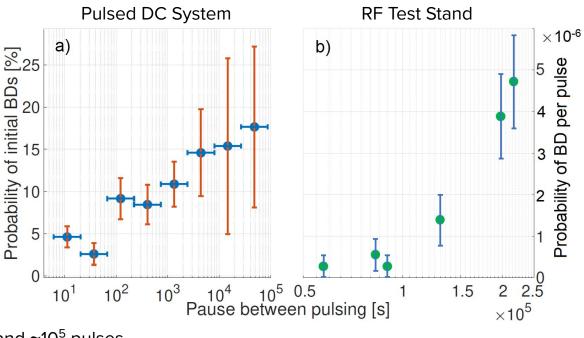
- Variable reprate from 10 Hz to 6000 Hz
- Swap between two reprates (100 Hz vs 2000 Hz)
- 3. Burst mode: change reprate after every



Effect of the repetition rate

10⁻³ ^{10^{-⊄} Iddq] HOB} 10⁻⁵ All BDs Error bar for all BDs BDs at target only Error bar for BDs on target voltage 10⁻⁶ 10² 10³ 10¹ **Repetition Rate [Hz]** U 0.5 ms 3. 10 ms

Measurements: laroslava Profatilova



Effect of a longer pause between measurements

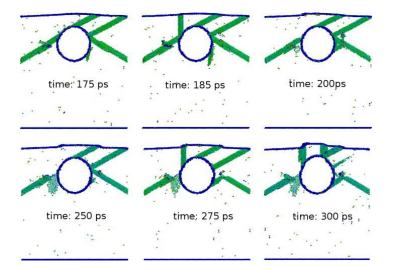
- Previously qualitatively noticed that any pause in pulsing increases BD susceptibility
 - Both with DC and RF Ο
 - Even when the system has Ο been under UHV conditions
- => Needed to be measured quantitatively
 - Results both from DC and RF 0

- Increase in the values after ~100 s and ~ 10^5 pulses
 - Roughly the time of a monolayer formation Ο

RF measurements: Lee Millar

A longer pause increases BD susceptibility

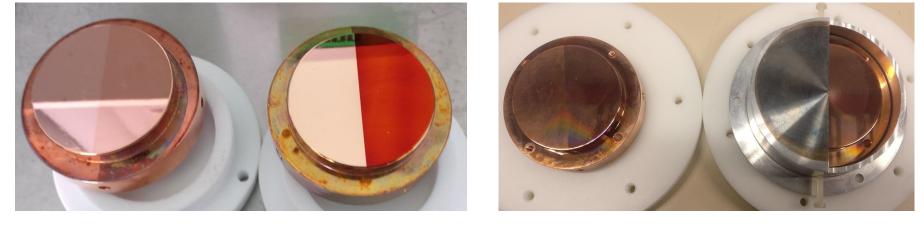
- Several different experiments agree


 Time scales from 0.5 ms to 28 h
- Best ramping scenario was the one with no pauses
- Each reprate measurement shows a higher BDR after a longer idle time
- Initial BD probability increases with a longer pause between the measurements

- BDs after pauses linked to secondary BDs
 - I.e. events right after other BDs
 - Backed by the two-term exponential model fitted on the BD probability PDF
- => Secondary BDs mainly caused by surface impurities attaching on Cu surface from vacuum?
- However, the effect saturates at some point and is cleaned quickly with pulses and BDs

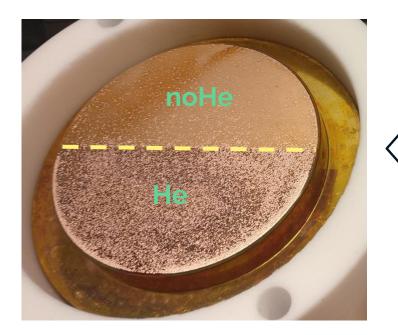
He irradiation of Cu electrodes

The hypothesis linking He irradiation to BD generation 🧚

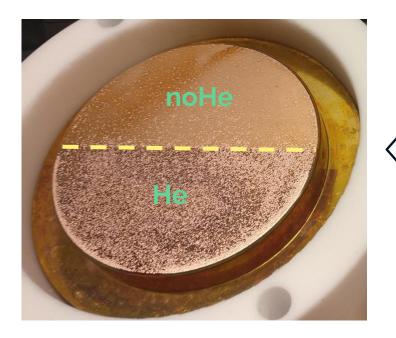

- He ions permeate the Cu surface, forming voids in the subsurface region (< 300 nm)
- These voids act as nucleation sites for dislocations
- Dislocations, moving under stress caused by the electric pulsing, migrate to the surface and cause deformations
- Higher electric field near the deformation spots nucleate BDs

Pohjonen, A. S., et al. "Dislocation nucleation from near surface void under static tensile stress in Cu." *Journal of Applied Physics* 110.2 (2011): 023509.

He implantation - 2+1 pairs of electrodes


- Irradiation of two pairs in 2015 (Soft Cu)
 - He⁺ with 30 keV
 - Fluence 6.7 x 10^{16} He/cm² (around 5 at.%)
 - Vacancy clusters confirmed up to 300 nm from the surface (PAS) close to the maximum depth of He ions (ERDA & SRIM)
- Another irradiation in 2018 (1 pair of Hard Cu)
 - Same parameters as in 2015
 - ERDA measurements after irradiation

First results: He makes a difference

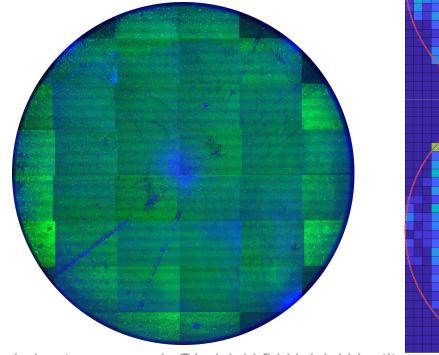


Cathode

Twisting the electrodes

Cathode

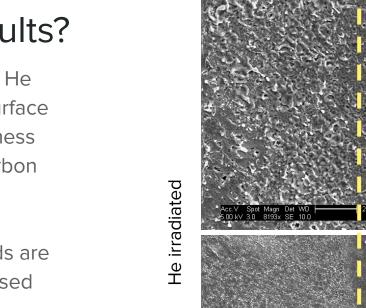
Twisting the electrodes shows BDs initiating from Cathode

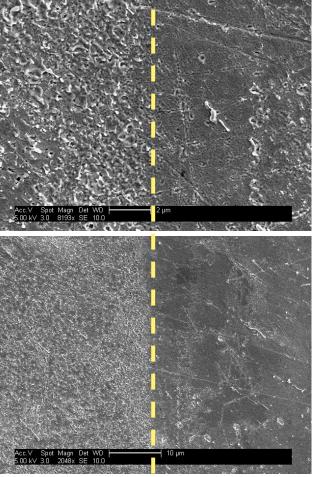



Cathode

Similar results on Hard Cu He

- Controlled amount of 3000 BDs
- Dlfference between halves not so huge, but still observable




Can we trust the results?

- Closer analysis shows that the He irradiation also modifies the surface
 - Increased surface roughness
 - Increased amounts of carbon

 Not clear yet, whether the voids are fully responsible for the increased amount of BDs

> SEM images: Yinon Ashkenazy, Inna Popov & Ayelet Yashar

Anton Saressalo | anton.saressalo@helsinki.fi | Helsinki Institute of Physics | University of Helsinki 26

Von-irradiatec

Ongoing experiments: Plasma cleaning

Conclusions

- Pause between pulses affects BD probability
- Secondary BDs linked to surface impurities
- Surface impurities rapidly cleaned by pulses & BDs

CÉRN

- He irradiation leads to higher number of BDs
 - Reason not fully clear

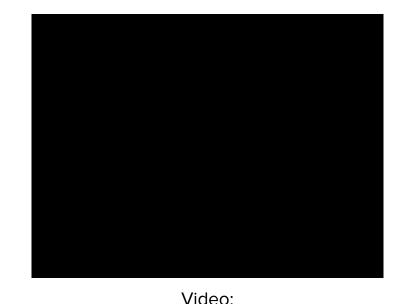
Thank you for your attention!

Anton Saressalo

RF Development Meeting, July 15th 2020

Anton Saressalo | anton.saressalo@helsinki.fi | Helsinki Institute of Physics | University of Helsinki 29

Cleaning the Cu surfaces in-situ with plasma


• Idea

"Micro sandblasting" the cathode surface with Ar+ ions to get rid of surface impurities

- Can be done in vacuum
- Minimal damage to surface
- HV equipment already there

• Challenges

- Need to use also other gases than Ar?
- Difficult to find the optimal parameters
 - Pressure, voltage, current, time
- Methods to study effects on the Cu surface

Aarre Kilpeläinen

