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Breakdowns limit the efficiency of
the Compact LInear Collider
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● Copper accelerating structures
in vacuum @ room temperature

● Colliding electrons and positrons
● Linear accelerator built in stages

○ 380 GeV / 11 km
○ …
○ 3 TeV / 50 km

Photo: CERN

⇒ Breakdowns

x 2 ⇨  70 MV/m

x 2 ⇨ 120 MV/m
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Copper requires conditioning to endure breakdowns
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● Pristine electrodes 
vulnerable to BDs already 
at small fields

● After ~5x108 pulses 
& ~5000 BDs, 
BD field can be 5 times 
higher

● Long and short term 
conditioning?



Anton Saressalo | anton.saressalo@helsinki.fi | Helsinki Institute of Physics | University of Helsinki

Faster conditioning with DC compared to RF
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● Conditioning curves similar 
between Sbox, Xbox3 and 
Pulsed DC LES

● Huge difference in time scales

● Sbox @ 25 Hz: 4 months

● Xbox @ 200 Hz: 2 months
● Pulsed DC LES @ 2 kHz: 3.5 days

● Pulsed DC System much smaller and 
simpler to operate compared to 
Xboxes

○ Allows focus on the BDs only

Measurements:
Lee Millar and

Iaroslava Profatilova



Experimental setup: Pulsed DC Systems
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Pulsed DC Systems
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● Similar systems at CERN and in 
Helsinki, also one in Uppsala

● Cu electrodes
○ 40-60 mm  contact diameter
○ 40-60 µm gap

● Short DC pulses
○ Electric fields up to 150 MV/m
○ 1 µs pulses @ 2 kHz
○ (near) Ultra High Vacuum (< 10-7 mbar)
○ Room temperature

● ~ 1000 BDs / 108 pulses per day
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Pulsed DC systems
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● Similar systems at CERN and in 
Helsinki, also one in Uppsala

● Cu electrodes
○ 40-60 mm  contact diameter
○ 40-60 µm gap

● Short DC pulses
○ Electric fields up to 150 MV/m
○ 1 µs pulses @ 2 kHz
○ Ultra High Vacuum (< 10-7 mbar)
○ Room temperature

● ~ 1000 BDs / 108 pulses per day
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Pulse shapes: BDs are detected from current peaks
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Normal pulse without a BD

A pulse with a BD

Breakdowns are 
also seen as 
pressure spikes



Optimizing the pulsing parameters
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Voltage recovery after BDs - “ramping”
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● “Ultra-short term conditioning”

● Voltage is ramped up from one 

fifth to the target value over 
2000 pulses

● But the ramping itself 

increases BD probability

● Why? And how to ramp up 

causing minimum secondary 
BDs
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Ramping scenario comparison
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Scenario Total BDR
Secondary 

BD %
BD serie 
length

▲Steps, 20 steps, F=4 1.78E-05 70 3.3 ± 0.1

▸ Steps, 20 steps, F=1000 7.68E-05 82 4.3 ± 0.2

◂ Steps, 9 steps, F=1 8.18E-05 88 7.4 ± 0.6

▼Steps, 5 steps, F=1 2.05E-05 84 5.3 ± 0.4

★ Slopes, 5 slopes, F=1 3.37E-05 90 10.6 ± 0.8

♦ Slopes, 3 slopes, F=0.5 2.98E-04 96 20.4 ± 1.1

● Slopes, 1 slope, F=100 5.86E-06 67 3.1 ± 0.1

🟋 No ramping 9.60E-05 94 15.3 ± 1.3
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Ramping affects BD probability
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Effect of the repetition rate
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● What is the optimal pulsing 
frequency?

● Marx generator allows 
reprates up to 6 kHz

3 experiments:

1. Variable reprate from
10 Hz to 6000 Hz

2. Swap between two reprates 
(100 Hz vs 2000 Hz)

3. Burst mode: change reprate after every 
pulse
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Effect of the repetition rate
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1. 2.

3.

Measurements:
Iaroslava Profatilova
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Effect of a longer pause between measurements
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● Previously qualitatively noticed that 
any pause in pulsing increases BD 
susceptibility

○ Both with DC and RF
○ Even when the system has 

been under UHV conditions

● => Needed to be measured 
quantitatively

○ Results both from DC and RF

● Increase in the values after ~100 s and ~105 pulses
○ Roughly the time of a monolayer formation RF measurements:

Lee Millar

Pulsed DC System RF Test Stand
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A longer pause increases BD susceptibility
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● Several different experiments agree
○ Time scales from 0.5 ms to 28 h

● Best ramping scenario was the one 
with no pauses

● Each reprate measurement shows a 
higher BDR after a longer idle time

● Initial BD probability increases with
a longer pause between the 
measurements

● BDs after pauses linked to secondary BDs
○ I.e. events right after other BDs
○ Backed by the two-term exponential 

model fitted on the BD probability PDF

● => Secondary BDs mainly caused by surface 
impurities attaching on Cu surface from 
vacuum?

● However, the effect saturates at some point 
and is cleaned quickly with pulses and BDs



He irradiation of Cu electrodes
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● He ions permeate the Cu surface, forming voids in 
the subsurface region (< 300 nm)

● These voids act as nucleation sites for dislocations

● Dislocations, moving under stress caused by the 
electric pulsing, migrate to the surface and cause 
deformations

● Higher electric field near the deformation spots 
nucleate BDs

The hypothesis linking He irradiation to BD generation
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Pohjonen, A. S., et al. "Dislocation nucleation from 
near surface void under static tensile stress in Cu." 
Journal of Applied Physics 110.2 (2011): 023509.
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● Irradiation of two pairs in 2015 (Soft Cu)
○ He+ with 30 keV
○ Fluence 6.7 x 1016 He/cm2 (around 5 at.%)
○ Vacancy clusters confirmed up to 300 nm from the 

surface (PAS) close to the maximum depth of He 
ions (ERDA & SRIM)

He implantation - 2+1 pairs of electrodes
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● Another irradiation in 2018
(1 pair of Hard Cu)

○ Same parameters as in 2015
○ ERDA measurements after 

irradiation
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First results: He makes a difference
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Twisting the electrodes
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Twisting the electrodes shows BDs initiating from Cathode
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Similar results on Hard Cu He
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A
node

C
athode

● Controlled amount of 3000 BDs
● DIfference between halves not so huge, but 

still observable

He noHe
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● Closer analysis shows that the He 
irradiation also modifies the surface
○ Increased surface roughness
○ Increased amounts of carbon

● Not clear yet, whether the voids are 
fully responsible for the increased 
amount of BDs

Can we trust the results?
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SEM images:
Yinon Ashkenazy, 

Inna Popov & 
Ayelet Yashar



Ongoing experiments: Plasma cleaning
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Conclusions
● Pause between pulses affects BD 

probability

● Secondary BDs linked to surface 
impurities

● Surface impurities rapidly cleaned by 
pulses & BDs

● He irradiation leads to higher 
number of BDs
➢ Reason not fully clear

Anton Saressalo
anton.saressalo@helsinki.fi RF Development Meeting, July 15th 2020

Thank you 
for your attention!
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● Idea
“Micro sandblasting” the cathode surface with Ar+ ions to 
get rid of surface impurities
➕ Can be done in vacuum
➕ Minimal damage to surface
➕ HV equipment already there

● Challenges
○ Need to use also other gases than Ar?
○ Difficult to find the optimal parameters

■ Pressure, voltage, current, time
○ Methods to study effects on the Cu surface

Cleaning the Cu surfaces in-situ with plasma

29

Video:
Aarre Kilpeläinen

https://docs.google.com/file/d/1NYkvX0sPGMY_L2ToOHDeznEwbPH0HEHq/preview

