

Unit 5 Some elements of superconductivity

Ezio Todesco European Organization for Nuclear Research (CERN)

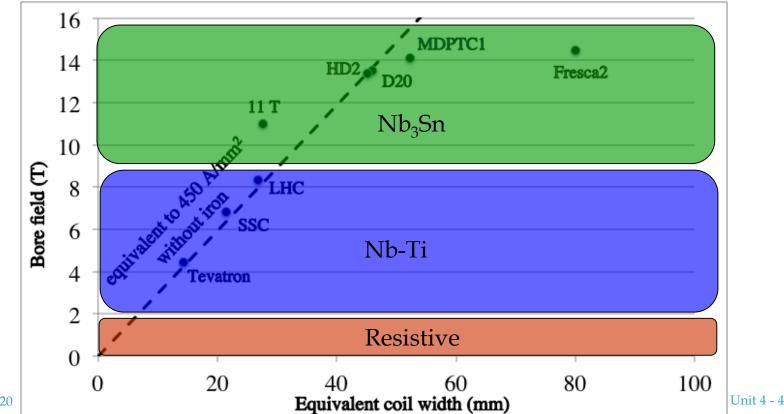
 Lectures based on USPAS courses in 2009-2015 with P. Ferracin, H. Felice, S. Prestemon and on University of Milano Bicocca courses in 2016-2018
This lecture based also on M. Sorbi course at Milano University
Thanks to L. Bottura and G. de Rijk for proposing and supporting this initiative
<u>All the units will use International System (meter, kilo, second, ampere) unless specified</u>

E. Todesco, June 2020

- Part 1 From beam dynamics to magnet specifications
 - Unit 1: The energy and specifications for cell dipole and quadrupole
 - Unit 2: The luminosity and specifications for insertion region magnets
 - Appendix A: Beam optics from stable motion to chaos
- Part 2 Principles of electromagnets
 - Unit 3: Multipolar expansion of magnetic field
 - Unit 4: How to generate pure multipole field
- Part 3 Basics of superconductivity
 - Unit 5: Some elements of superconductivity
 - Appendix B: About Maxwell equations, and scales in atomic physics
 - Unit 6: Instabilities and margins
- Part 4 Magnet design
 - Cable and insulation magnetic design grading and iron forces structures - protection

PROLOGUE

Magnetic field is proportional to current density and coil width


$$B_1 = g_c w j$$

- Resistive magnets can operate with cable up to 1 A/mm², and having special cooling up to 5 A/mm²
- Superconducting magnets can go up to 100 times more !

PROLOGUE

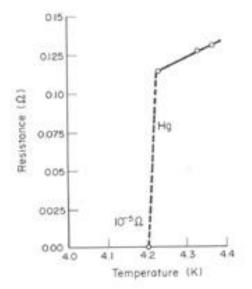
- Most of superconducting accelerator magnets lay on a line corresponding to overall current density of 450 A/mm², if we take a reasonable a γ_c =6.6×10⁻⁴ (T mm/A)
 - Note: the current density of the actual magnet is a bit different, since it includes iron contribution this is a first order snapshot that will be refined

PROLOGUE

- Most of superconducting accelerator magnets lay on a line corresponding to overall current density of 450 A/mm², if we take a reasonable a γ_c =6.6×10⁻⁴ T mm/A
 - What are the limitations to high current densities?
- First: superconducting state is destroyed by a combination of field and current density
 - This will be the topic of this Unit 5
- Second: superconducting state is limited by instabilities and operation requires margin
 - This will be the topic of Unit 6, that also introduces the reasons for having such a complicated cables instead of having a bulk conductor
- Third: the electromagnetic forces push on the cables and the limit of the material can be reached
 - This will be covered in the Unit 10 about forces
- Fourth: the energy has to be evacuated during a quench, and there is a limit on coil energy density
 - This will be covered in the Unit 12 about protection

CONTENTS

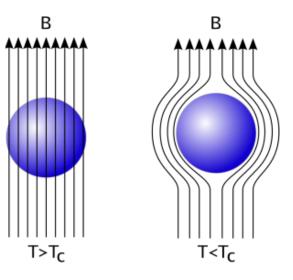
- Elements of phenomenology and theory of superconductors required to "understand" the existence of a critical surface
 - Meissner effect and London theory
 - Needed to show that B limits current density
 - Ginzburg-Landau theory and coherence length
 - Coherence length needed to define type I and type II
 - BCS theory, Cooper pairs, energy gap and fluxoid quantization
 - Abriksov and Type II superconductors
- A list of superconductors and their critical surface properties
 - Nb-Ti
 - Nb₃Sn
 - HTS
 - MgB₂



CRITICAL TEMPERATURE

- In 1911, Kamerlingh Onnes discovers the superconductivity of mercury
 - His team was investigating properties (resistivity, specific heat) of materials at low temperature
 - This discovery has been made possible thanks to his efforts to liquefying Helium, a major technological advancement needed for the discovery
 - Nobel prize 1913 "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium »
- Phenomenology
 - Below 4.2 K, mercury has a non measurable electric resistance not very small, but zero !
 - 4.2 K is called the critical temperature: below it the material is superconductor

Heinke Kamerlingh Onnes (18 July 1853 – 4 February 1928) Nobel prize 1913



MEISSNER EFFECT

- In 1933, Meissner and Ochsenfeld discover perfect diamagnetism of superconductors (Meissner effect)
- Phenomenology
 - The magnetic field inside the superconductor is zero
 - A conductor with zero resistance, according to Maxwell Equations, has dB/dt=0
 - A superconductor is something more: it has B=0

Walther Meissner, German (16 December 1882 – 15 November 1974)

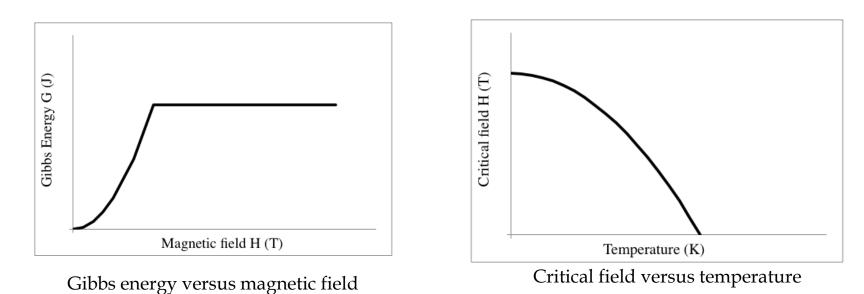
Rober Ochsenfeld, German (18 May 1901 – 5 December 1993)

- Meissner effect implies that there superconductivity cannot survive above a given magnetic field H_c , called critical field
- Heuristic proof
 - This can be deduced through thermodynamics
 - Gibbs free energy in case of magnetic field is

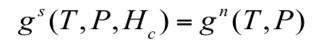
$$G = U + PV - TS - \mu_0 VMH$$

• To have a null field inside, magnetization must be equal and opposite to the magnetic field

$$M = -H$$

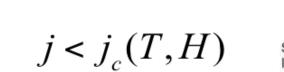

• And therefore

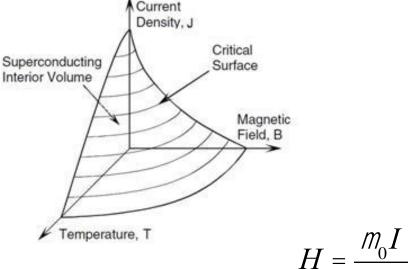
$$G = U + PV - TS + \mu_0 VH^2$$


• Since in the normal state the energy is not depending on the field, there is a value of the field above which it is energetically more convenient to be not superconductive

CRITICAL FIELD

• The condition for the critical field is

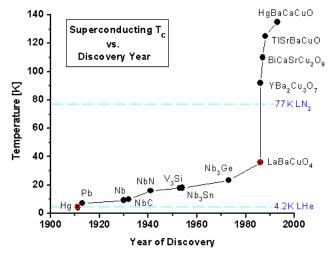



• Experimental data show that one has a dependence of the critical field on the temperature $\left[\left(-1 \right)^{\alpha} \right]$

$$H_{c}(T) = H_{c0} \left[1 - \left(\frac{T}{T_{c0}} \right)^{\alpha} \right]$$

- Phenomenology: Superconductivity cannot survive at large values of current density
 - Superconductivity exists in a three dimensional space given by magnetic field, current density and temperature called critical surface

- Heuristic proof showing that also *j*:
 - A wire of radius *a* carrying a current *I* will have a magnetic field
 - So a limit in magnetic field also implies a limit in current density


$$H = \frac{m_0 ja}{m_0 ja}$$

Unit 5 - 11

SUPERCONDUCTIVITY AND TEMPERATURE

- 1986: Bednorz and Muller discover superconductivity at high temperatures in layered materials having copper oxide planes
 - Nobel prize in 1986 (a fast one ...)
 - The discovery opened the way towards a new class of materials
- Lot of emphasis is given to superconductivity at higher and higher temperatures
 - For applications very important factors are also (i) the ability of carrying current density (>100 A/mm²) (ii) the cost (iii) the ability of surviving large (>2 T) magnetic field
 - This last one required only for building magnets

Karl Alexander Muller , Swiss (27 April 1927)

George Bednorz, German (16 May 1950)

- How are flowing the currents that produce the magnetization opposing to the external magnetic field?
 - Maxwell equations impose some constraints
 - Let us consider a supercurrent J_s

$$J_s = n_s e v_s$$

• Taking the time derivative and using the Lorentz equation one has

$$\dot{J}_{s} = \frac{d}{dt}J_{s} = n_{s}e\frac{d}{dt}v_{s} = \frac{n_{s}e^{2}}{m}E$$

• Using Maxwell equations

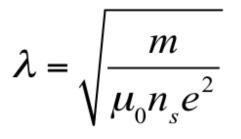
rot rot
$$\dot{B} = \mu_0 \operatorname{rot} \dot{J}_s = \frac{\mu_0 n e^2}{m} \operatorname{rot} E = \frac{\mu_0 n e^2}{m} \dot{B}$$

rot rot \dot{B} =grad div $\dot{B} - \nabla^2 \dot{B} = -\nabla^2 \dot{B}$

$$\nabla^2 \dot{B} + \frac{\mu_0 n_s e^2}{m} \dot{B} = 0$$

 $\operatorname{rot} B = \mu_0 J_s$ $\dot{B} = \operatorname{rot} E$

LONDON THEORY


• So we obtain

$$\nabla^2 \dot{B} + \frac{\mu_0 n_s e^2}{m} \dot{B} = 0$$

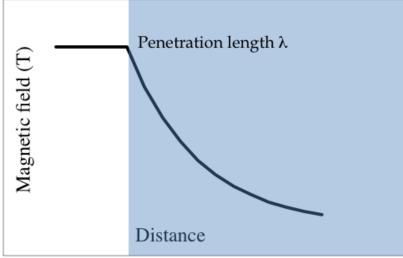
• In 1935 the London brothers propose that the previous equations for a superconductor must be valid for B, not only for dB/dt

$$\nabla^2 B + \frac{1}{\lambda^2} B = 0$$

• The quantity λ has the dimension of a length

Fritz and Heinz London, Germans (7 March 1900 – 30 March 1954) (7 November 1907 – 3 August 1970) Unit 5 - 14

LONDON THEORY


• The London equations

$$\nabla^2 B + \frac{1}{\lambda^2} B = 0$$

• Have a simple exponential solution

$$B(x) = B(0) \exp\left(-\frac{x}{\lambda}\right)$$

• So the magnetic field penetrates in the superconducting material for a distance of the order of λ : that's why it is called penetration length

Penetration of the magnetic field in a superconductor (shaded area)

One can rewrite using the classical electron radius see Appendix
B) to better show that it is a length: n_s is a density

$$\lambda = \sqrt{\frac{m}{\mu_0 n_s e^2}} \qquad \lambda^2 n_s = \frac{m}{\mu_0 e^2} = \frac{1}{4\pi} \frac{4\pi \varepsilon_0 m c^2}{e^2} = \frac{1}{4\pi r_e} \qquad \lambda^2 r_e = \frac{1}{4\pi n_s}$$

- The penetration length is related to the density of superelectrons
- Typically, one has densities of the order of 10²⁸-10²⁹ electrons/m³, and lengths of 10-100 nm
 - Field penetrates on a very thin layer!

	λ	ns
	(nm)	(m^{-3})
Sn	34	2.5E+28
Al	16	1.1E+29
Pb	37	2.1E+28
Cd	110	2.3E+27
Nb	39	1.9E+28

Penetration lenght and superelectron density in some superconductors

CONTENTS

• Elements of phenomenology and theory of superconductors

- Meissner effect and London theory
- Ginzburg-Landau theory and coherence length
- BCS theory, Cooper pairs, energy gap and fluxoid quantization
- Abriksov and Type II superconductors
- A list of superconductors and their critical surface properties
 - Nb-Ti
 - Nb₃Sn
 - HTS
 - MgB₂

• In 1950 Ginzburg and Landau propose a macroscopic quantum theory based on second order phase transitions

$$\frac{\left(-i\hbar\nabla - 2eA\right)}{2m}\Psi + \left(\alpha + \beta\left|\Psi\right|^{2}\right)\Psi = 0$$

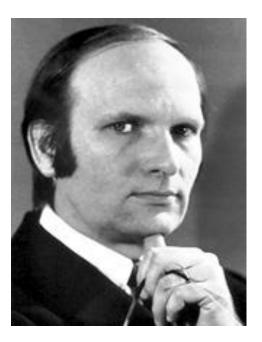
• Definition of coherence length ξ , related to the phenomenological parameter α in the equation

Vitaly Ginzburg, Russian 21 September or 4 October 1916 8 November 2009

Lev Landau, Russian 22 January 1908 – 1 April 1968

$$\xi = \sqrt{\frac{\hbar^2}{2m\alpha}}$$

BCS THEORY


• In 1957 Bardeen, Cooper and Schrieffer publish a microscopic theory (BCS) based on quantum mechanics – Nobel prize in 1972

John Bardeen, American 23 May 1908 – 30 Janvier 1991

Leon Cooper, American 28 February 1930

John Robert Schrieffer, American 31 May 1931

- A key element of the theory is the discovery that superconductors absorb electromagnetic radiation in the 100 GHz range
 - A photon of this frequency carries an energy of $6.6 \times 10^{-34} \times 10^{11} \text{ J} = 6.6 \times 10^{-23} \text{ J} = 6.6 \times 10^{-23} / 1.6 \times 10^{-19} \text{ eV} = 10^{-4} \text{ eV}$
 - This corresponds to an energy gap as in semiconductors
- Another element supporting the existence of the energy gap is the specific heat measurements, showing an exponential term

$$C_n = aT^3 + b\exp(-E_g / kT)$$

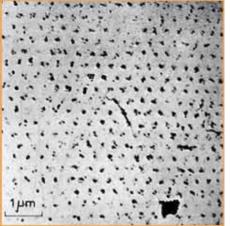
- The energy gap is created by couples of electrons interacting with the vibrations of the atomic lattice (phonons)
 - This gives a bound energy (negative) between electron couples of the order of the energy gap so part of the electrons go for this lower energy state (Bose condensate)
- This is supported by the evidence that different isotopes of the same element have different superconducting properties (different isotopes, different phonons) E. Todesco, June 2020

BCS THEORY: ENERGY GAP AND CRITICAL TEMPERATURE

- This also justifies why good conductors cannot be superconductors
 - They present little interaction between lattice and electrons, that is usually the source of resistivity but in the superconducting case it is the source of the bound energy
- There is a relation between the energy gap and the critical temperature
 - Close to T=0 one has

$$E_g(T_c \approx 0) = 3.5kT_c$$

• The coherence length ξ of Ginzburg Landau theory is the distance of the electrons in the Cooper pairs


Element	Atomic number	E _g (meV)	E _g (J)	T _c (K)	E _g /kT _c (adim)
Al	13	0.34	5.4E-23	1.2	3.3
\mathbf{V}	23	0.16	2.6E-23	0.5	3.4
Zn	30	0.24	3.8E-23	0.9	3.2
Ga	31	0.33	5.3E-23	1.1	3.5
Nb	41	3.05	4.9E-22	9.3	3.8
Mo	42	0.27	4.3E-23	0.9	3.4
Cd	48	0.15	2.4E-23	0.5	3.2
In	49	1.05	1.7E-22	3.4	3.6
Sn	50	1.15	1.8E-22	3.8	3.5
La	57	1.90	3.0E-22	6.0	3.7
Ta	73	1.40	2.2E-22	4.5	3.6
Hg	80	1.65	2.6E-22	4.2	4.6
Ti	81	0.74	1.2E-22	2.4	3.6
Pb	82	2.73	4.4E-22	7.2	4.4

- BCS theory is based on quantum mechanics
 - One of the outcomes is that there is a quantization rule on the magnetic flux
 - To be more precise, what is quantized is the fluxoid, that is the flux plus the integral of *J* along the current

$$\left[\frac{m}{n_{s}e^{2}}\int \overline{J}\,d\overline{l} + \int B\,ds\right] = n\frac{h}{2e}$$

• The fluxoid $h/2e = 2.07 \times 10^{-15}$ weber can be experimentally measured and is one of the proofs of the Cooper pairs

First image of flux penetration, U. Essmann and H. Trauble Max-Planck Institute, Stuttgart Physics Letters 24A, 526 (1967)

• To give the algebra behind this quantity *h*/*e* this we start from angular momentum quantization

$$\mathcal{L} = \frac{1}{2\pi} \oint p \, dr = n\hbar \qquad \qquad \oint p \, dr = n\hbar$$

• In electromagnetism, we replace momentum with

$$\overline{p} \rightarrow \overline{p} + e\overline{A}$$

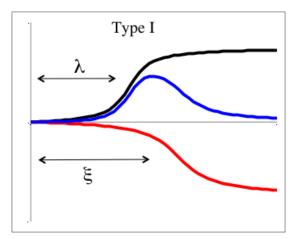
• Since we have pairs we have

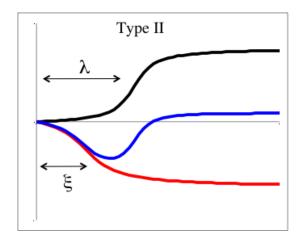
 $\overline{p} \rightarrow 2m\overline{v} + 2e\overline{A}$

r

• Substituting we have

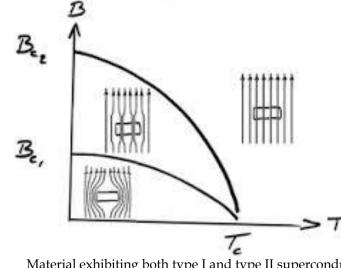
$$2\oint \overline{p}\,d\overline{r} + 2e\oint \overline{A}\,d\overline{r} = nh$$


$$2\oint \overline{p}\,d\overline{r} + 2e\oint \overline{A}\,d\overline{r} = nh$$


- Now the current density is given by $J = n_{s}ev$
- And therefore $2\frac{m}{n_s e} \oint \overline{J} \, d\overline{r} + 2e \oint \overline{B} \, ds = nh$
- So one has $\left[\frac{m}{n_s e^2} \int \overline{J} \, d\overline{l} + \int B \, ds\right] = n \frac{h}{2e}$
- And *h/2e* is the smallest fluxoid

TYPE I AND TYPE II SUPERCONDUCTORS

- If the coherence length is smaller than the penetration length, one has a minimum of the Gibbs energy close to the superconductor surface, inside the superconductor
 - Energetically is more favorable to have in the superconductor a sequence of normal and superconducting zones, and the magnetic flux penetrates the superconductor
 - This is a type II superconductor, that can tolerate magnetic field and therefore can be used to build magnets
 - These superconductors still exhibit Type I for lower fields



TYPE I AND TYPE II SUPERCONDUCTORS

- Type I superconductors: $\xi/\sqrt{2} > \lambda$
 - No field penetration cannot withstand magnetic field
- Type II superconductors: $\xi/\sqrt{2} < \lambda$
 - Field penetration in quantized fluxoids used for building magnets
 - Without type II no superconducting magnets this also explains why it took 50 years from the discovery of superconductivity to first sc magnet
- Theory of type II superconductors developed

by Abrikosov in the 50s (Nobel prize in 2003)

Alexei Abrikosov, Russian (25 June 1928) Unit 5 - 26

Material exhibiting both type I and type II superconductivity

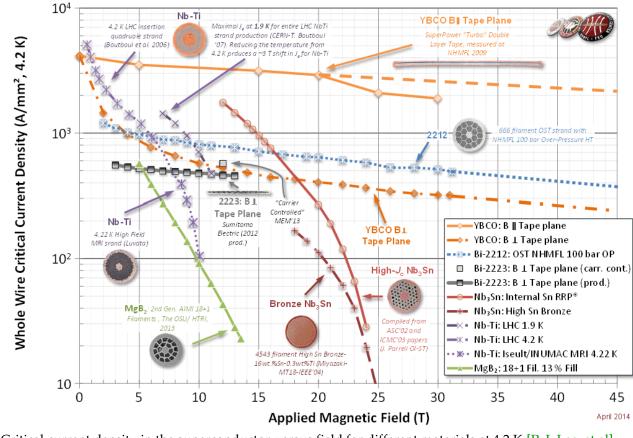
TYPE II SUPERCONDUCTORS AND PINNING FORCE

- Type II superconductors can improve their properties through defects (doping)
 - Key element is the pinning force that prevents the movement of the fluxoids
 - Fluxoid movement means variation of magnetic field, giving flux variation, voltage and dissipation
 - Pinning force is zero at B=0 and at $B=B^*_{c2}$, therefore it is usually fit through

$$J_{c}(B,T)B \propto \left(\frac{B}{B_{c2}^{*}(T)}\right)^{\alpha} \left(1 - \frac{B}{B_{c2}^{*}(T)}\right)^{\beta}$$

Note for α=β=1 one has a parabola x(1-x), crossing zero at 0 and 1, i.e. B=0 and at B=B^{*}_{c2},

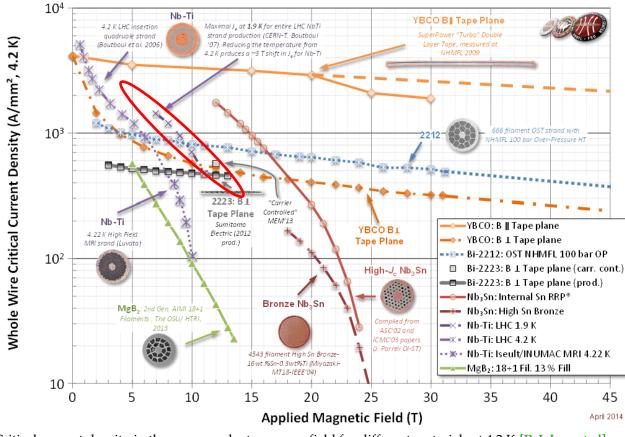
CONTENTS


• Elements of phenomenology and theory of superconductors

- Meissner effect and London theory
- Ginzburg-Landau theory and coherence length
- BCS theory, Cooper pairs, energy gap and fluxoid quantization
- Abriksov and Type II superconductors
- A list of superconductors and their critical surface properties
 - Nb-Ti
 - Nb₃Sn
 - HTS
 - MgB_2

SUPERCONDUCTIVITY

- Critical current density vs. field for different materials (semilog scale) at 4.2 K
 - To remember: more critical current density, less field
 - If you see these plots, check scale in current density (can be log or not, giving different shapes



Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png E. Todesco, June 2020 E. Todesco - Superconducting magnets 29

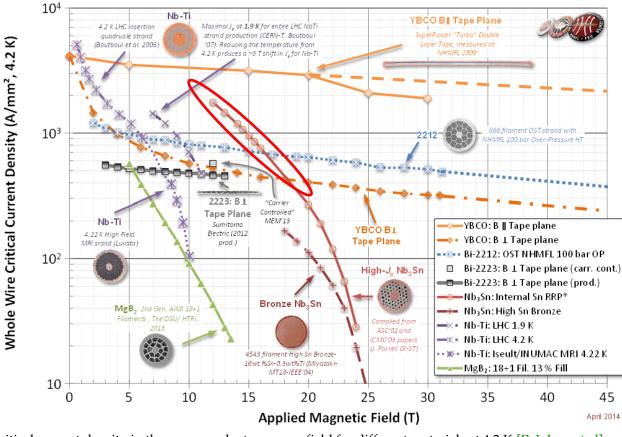
SUPERCONDUCTIVITY

• Nb-Ti

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png E. Todesco, June 2020 E. Todesco - Superconducting magnets 30

Nb-Ti

- Nb-Ti is the workhorse of superconductivity $B_{C2}(T) = B_{C20} \left| 1 - \left(\frac{T}{T_{c0}} \right)^{1.7} \right|$
 - Discovered in 1962
 - Critical temperature of 10 K, critical field of 15 T
 - Parametrization (L. Bottura, IEEE TAS 10 (2000) 1054)


•
$$\alpha = 0.63 \quad \beta = 1.0 \quad \gamma = 2.3$$

$$J_{C}(b,t) = \frac{C}{B} \left[\frac{B}{B_{C2}(T)} \right]^{\alpha} \left[1 - \frac{B}{B_{C2}(T)} \right]^{\beta} \left[1 - \left(\frac{T}{T_{co}} \right)^{1.7} \right]^{\gamma}$$

- Easy to wind, many applications
- All superconducting magnets for accelerators are made with Nb-Ti
- Applications: HEP experimental magnets, MRI / NRM solenoids, ...
- LHC pushed this technology to its limit with 8 T magnets •
 - Why 8 T and not 15 T?
 - One cannot operate at 0 K, at 1.9 K critical field is 13 T
 - Critical field decreases with current density, so practical limit is 10 T
 - Some margin must be taken to avoid instabilities, so about 8 T is the limit - we will come on this point

SUPERCONDUCTIVITY

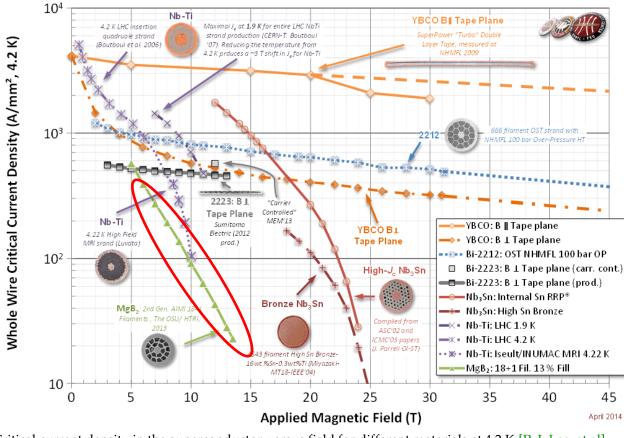
• Nb₃Sn

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png E. Todesco, June 2020 E. Todesco - Superconducting magnets 32

- Nb₃Sn allows doubling the Nb-Ti performance
 - Discovered in 1954, before Nb-Ti
 - Critical temperature of 18 K, critical field of 30 T
 - Parametrization

•
$$\alpha = 0.5 \quad \beta = 2 \quad \gamma = 0.96$$
 $J_{C}(b,t) = \frac{C}{B} \left[\frac{B}{B_{C2}(T)} \right]^{\alpha} \left[1 - \frac{B}{B_{C2}(T)} \right]^{\beta} \left[1 - \left(\frac{T}{T_{co}} \right)^{1.52} \right]^{\gamma} \left[1 - \left(\frac{T}{T_{co}} \right)^{2} \right]^{\gamma}$

 $B_{C2}(T) = B_{C20} \left| 1 - \left(\frac{T}{T_{c0}}\right)^{1.52} \right|$

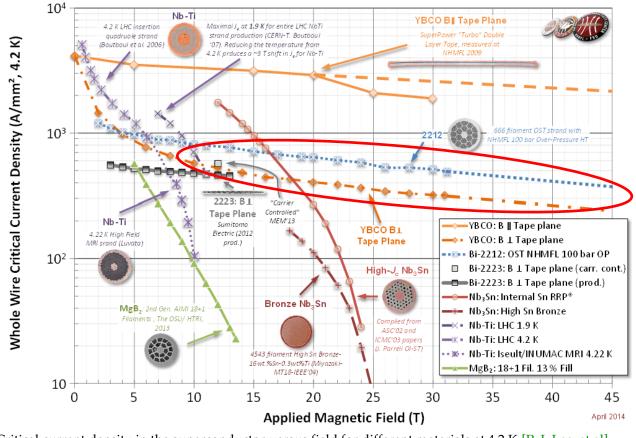

- This is the Summer parameterization, in the literature you can find many types of semi empirical fit, including dependence on strain
 - Must be formed reacting it at 650 C for several days with tight tolerances on temperature
 - After formation it is very brittle so coil has to be impregnated
- Applications: model magnets for accelerators, ITER coils, solenoids
 - Project for 11 T dipoles in Nb₃Sn in High Luminosity LHC <u>www.cern.ch/hilumi</u> and M. Karppinen et al., IEEE Trans Appl Supercond **22** (2012) 4901504
 - Project for triplet quadrupoles in Nb₃Sn in High Luminosity LHC

E. Todesco, June 2020 www.cern.ch/hilumi and P. Ferracin et al., IEEE Trans Appl Supercond 24 (2014) 4002306

SUPERCONDUCTIVITY

• MgB_2

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png E. Todesco, June 2020 E. Todesco - Superconducting magnets 34


MgB₂

- MgB₂ is a recent discovery
 - Discovered in 2001
 - Critical temperature of 39 K, critical field of less than 10 T
 - Anomaly in the classification: low temperature or high temperature superconductor?
 - Low field but low cost and easy manufacturing
 - Interesting for power lines or low field (<10 T) magnets
 - Project for superconducting link in MgB₂ in High Luminosity LHC <u>www.cern.ch/hilumi</u> and A. Ballarino et al., IEEE Trans Appl Supercond **21** (2011) 980-983
 - Technological development of superferric magnet in the HL-LHC framework <u>www.cern.ch/hilumi</u> and M. Sorbi, M. Statera, S. Mariotto et al., IEEE Trans Appl Supercond **29** (2019) 4004505

SUPERCONDUCTIVITY

BSCCO and YBCO

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png E. Todesco, June 2020 E. Todesco - Superconducting magnets 36

- BSSCO and YBCO are the two main HTS (high temperature superconductors
 - Discovered in 1988/86
 - Large critical temperature ≈100 K
 - Very large critical field above 150 T
 - Flat critical surface (little dependence on field)
 - Large progress in reaching good current density
 - Both expensive (more than 10 times Nb-Ti ...)
 - Drawbacks:
 - YBCO round wires are not trivial most application on tapes
 - BSCCO requires a heat treatment at 800 C , and 100 bar of oxygen to increase *j*
 - NMR/MRI solenoids with HTS tapes have been developed
 - Projects of dipole inserts for accelerator magnets are onging in many labs (LBNL, BNL, CERN, CEA, ...)
 E. Todesco - Superconducting magnets 37

E. Todesco, June 2020

- We discussed some elements of superconductivity
 - Recent theory, slowly built after the experimental discovery
 - Its fundamental lay in quantum mechanics Cooper pairs
 - Long time from discovery to first magnets (44 years !)
- Superconductivity is destroyed by: temperature, current density, magnetic field
 - Critical surface is *j*(*B*,*T*) giving values below which the superconducting state exists
 - Fluxoid quantization having the factor 2 is a strong proof of Cooper pair existence
- For making magnets it is fundamental to have penetration of magnetic field
 - Type II superconductors

- Everybody thinks that the Holy Graal is superconductivity at room temperature
 - In reality for certain applications there are two aspects that are much more critical
 - Ability of carrying current density (including insulation) of the order of 100-1000 A/mm² to have compact devices
 - For making magnets: to survive magnetic field to have high field devices with zero consumption
 - And in all cases: to be cheap (and this is not the case)
- Unit 6 will explain how superconductivity has special limits that require a very peculiar shape of conductor
 - A bulk superconductor does not work this is also an important element of its cost