Preliminary Crab waist at SuperKEKB

May 25, 2020 @ FCC-ee MDI Meeting K. Oide

Many thanks to the SuperKEKB Team, esp.: Design/optics/commissioning: Y. Funakoshi, H. Koiso, A. Morita, Y. Ohnishi, K. Ohmi, H. Sugimoto, D. Zhou, and all SuperKCG members Crab waist sextupole setup: M. Masuzawa, T. Oki, S. Nakamura, and the magnet group Linac, injector: K. Furukawa, N. Iida, T. Kamitani, and the linac and BT groups Belle-II: I. Adachi, S. Tanaka

Work supported by KEK via K. Furukawa, Y. Suetsugu, M. Tobiyama, S. Yamaguchi, M. Yamauchi, as well as by FCC-ee via M. Benedikt & F. Zimmermann.

The crab waist scheme shifts the vertical pressed in those at the sext (x, y): waist of a beam by

$$\Delta s = -\frac{x^*}{2\theta_x}$$

Thus the associated transformation is

$$y^* \to y^* - p_y^* \Delta s = y^* + \frac{p_y^* x^*}{2\theta_x} ,$$

which is performed by a Hamiltonian at the IP:

$$H^* = \frac{x^* p_y^{*2}}{4\theta_x} \ .$$

If there are the phase relations between the IP and the sextupoles:

$$\Delta \psi_x = 2\pi$$
 and $\Delta \psi_y = 2.5\pi$,

then the variables at the IP (x^*, p_y^*) are ex-

(1)
$$x^* = \sqrt{\frac{\beta_x^*}{\beta_x}} x, \quad p_y^* = -\frac{y}{\sqrt{\beta_y^* \beta_y}} . \tag{5}$$

Thus the Hamitonian at the IP is equivalent to a Hamiltonian at the sext:

(2)

 $H = \frac{xy^2}{4\theta_x \beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}} ,$

(6)

which can be approximated by a Hamiltonian of (3)a sextupole:

 $H_s = \frac{k_2}{6} \left(x^3 - 3xy^2 \right) \;,$ (7)

with (4)

$$k_2 = -\frac{1}{2\theta_x \beta_y^* \beta_y} \sqrt{\frac{\beta_x^*}{\beta_x}} . \tag{8}$$

Base optics: sler_1704_80_A_YO1 (Y. Ohnishi)

SuperKEKB(LER, e+) IR optics ($\beta_{x/y}^* = 80/1 \text{ mm}$)

• K. Ohmi has noticed that the phase advances between CCY sexts (SLY*) and IP are close to the crab-waist condition (SuperKEKB Beam Dynamics Workshop, Sept. 2019):

	$\Delta \psi_x/2\pi$	$\Delta \psi_y / 2\pi$
SLY1R	1.005	1.250
SLY2R	0.505	0.750
SLY1L	0.495	0.750
SLY2L	0.995	1.250

Thus these sextupoles can be usable for crab sexts. The effects due to the small differences in the phase advances are tiny (K. Ohmi).

Parameters (if there is no blowup...)

Lattices (Y. Ohnishi, provided via H. Koiso): LER 4 nm: sler_1705_80_1_20200522180706.sad LER 2 nm:sler_200310_170033989.sad HER: sher_5780_60_1_20200426082304.sad

Parameters		LER (4 nm) LER (2 nm)) HER	
Beam energy	GeV	4	7	
Particles / bunch	10^{10}	4	4	
Emittance x (lattice/IBS)	nm	4.03 / 4.32 1.64 / 2.17	4.48 / 4.51	
Emittance y (lattice/IBS)	pm	0.48 / 22.9 0.48 / 21.7	0.58 / 21.7	
Bunch length (lattice/IBS)	mm	4.7 / 4.8	5.04 / 5.06	
Mom. spread (lattice/IBS)	10^{-4}	7.5 / 7.7	6.3 / 6.3	
$\beta^*_{x/y}$	mm	80 / 1	60 / 1	
$\sigma^*_{x/y}$	$\mu{ m m}$	18.6 / 0.151 13.2 / 0.147	7 16.5 / 0.147	
Tunes		44.525/46.586/-0.0235	45.531/43.581/-0.0272	
Long. damping	turns	2270	2880	
Beam-beam $\xi_{x/y}^{a}$		$0.0041/0.076 \mid 0.0041/0.07$	5 0.0020/0.045	
Beam current	А	0.5	0.5	
Bunches/ring		783		
Half crossing angle	mrad	41.5		
Luminosity	nb/s	31.6 31.3		

^{*a*}incl. hour glass

Beam distribution for various CW ratios ($\beta_v^* = 1 \text{ mm}$)

- Same contours for all CW ratios.
- Simulation: BBWS(K. Ohmi) + lattice, by SAD •

• Suppression of the tail as well as higher density of the core are visible, even for CW = 20%.

Works for crab sextupoles, cables, power converters during the winter shutdown M. Masuzawa, T. Oki, S. Namamura, magnet group

Existing converter for sextupoles

• Left		
	K ₂ (m ⁻²)	xp _y ²
SLYTLP.1	1.4503	3.1772
SLYTLP.2	3.7325	-8.1772
SLXTLP.1	0.6718	-0.0148
SLXTLP.2	0.6718	0.0148
sum		-5
Sum		Ŭ
• Diabt		
• Right		
• Right	K ₂ (m ⁻²)	xp _y ²
• Right	K ₂ (m ⁻²) 0.3335	xp _y ² -0.0061
Right SLXTRP.1 SLXTRP.2	K ₂ (m ⁻²) 0.3335 0.3335	xp _y ² -0.0061 0.0061
Right SLXTRP.1 SLXTRP.2 SLYTRP.1	К ₂ (m ⁻²) 0.3335 0.3335 0.8757	xp _y ² -0.0061 0.0061 -1.8729
Right SLXTRP.1 SLXTRP.2 SLYTRP.1 SLYTRP.2	K ₂ (m ⁻²) 0.3335 0.3335 0.8757 3.2135	xp _y ² -0.0061 0.0061 -1.8729 6.8729

Spaces for 4 converters

LER SLY crab waist sextupoles: cablings & tests

• Power converters: tested by Jan. 23.

Polarity check by clamp meter & hole probe.

Installed new circuit breakers, on Jan. 7.

LER SLY crab waist sextupoles: cablings & tests

· 325sq-2c 4 cables laid from Dec. 23 through Jan. 10. Scaffolds removed Jan. 15.

SuperKEKB since Mar. 1, 2020

Crab waist of one ring has made it possible to increase the beam current of another ring.

Luminosity performance by the Crab Waist

Date		Mar. 31, 2020		May 13, 2020	
		LER	HER	LER	HER
Beam energy	GeV	4	7	4	7
Current/beam	А	0.35	0.37	0.54	0.53
Particles/bunch	10^{10}	2.2	2.3	3.4	3.3
eta_x^*	mm	80	60	80	60
β_y^*	mm	1	1	1	1
σ^*_x	$\mu{ m m}$	13.0	16.6	13.0	16.6
σ_y^* single/colli.	$\mu { m m}$	0.12/0.27	0.15/0.24	0.12/0.24	0.13/0.23
ξ_x		0.0028	0.0014	0.0043	0.0021
$\xi_y{}^a$		0.0262	0.0165	0.0413	0.0254
Bunches/ring		783			
Half crossing angle	mrad	41.5			
Crab waist LER/HER	%	0	0	60	40
Luminosity	nb/s	8.0		19.2	

- The 60%/40% crab waists in the LER/HER has made possible to increase the stored current by 50% in both rings.
- ξ_y has been increased by 60% by the crab waist, in both rings.
- Luminosity was more than doubled.

Beam sizes

CW = 0%/0%

500 400 [⁴] 300 100 20 20 15 10 10 10 10 0. 0.5 0.4 rente la pla de la presenta de la presenta de la serie de la s ^{*}ພົ0.3 0.2 Θ. 0. $\sigma_{v}^{*}(\mathsf{HER})$ σ_{y*}(HER) ⊙ ⊙ ⊙ ⊙ с., н 0. 0 $\sigma^*(\text{LER})$ σ_{X*}(HER) $\sigma_r^*(HER)$ 25 26 15 10 5 $\sigma_r^*(LER)$ 0^h0^m0^s 6^h 12^h 15^h 3^h 0^h0^m 9^h 4/1 5/13/2020

CW = 60%/40%

Issues & further improvements

- For this period of machine operation, the highest priority is put on accumulation of the luminosity of Belle II.
 - No drastic change of parameters, such as tune scan across resonance lines, are allowed. All tunings must be adiabatic.
- Belle-II backgrounds set limitations on beam current, collimation aperture, synchrotron radiation, etc.
 - Both stored beam (vacuum, Touschek) and injected beam (beam loss, SR) contribute to the background.
- To be tried in the near future:
 - Higher CW ratios.
 - Chromatic x-y coupling correction (ChCC) in the both rings.
 - By skew or rotating sextupoles (HER/LER).
 - Synchrotron injection in the HER.
 - Smaller β_v^* .

on (ChCC) in the both rings. s (HER/LER).

Method: •

- Randomly put skew quads on SD* sextupoles in the arc, to achieve • $\varepsilon_v/\varepsilon_x = 1\%$ at each tune.
- The couplings and dispersions are kept zero at the IP and the Fuji straight section.
- Weak-strong beam-beam simulation with lattice (BBWS/SAD). Synchrotron radiation is emitted at each element with realistic spectra. Tested for 8 random number seeds for misalignment. •

- **Results:** •
 - The blowup of the vertical emittance strongly depends on the random number for misalignment.
 - Crab waist is always positive even at 40%.
 - Some resonance lines such as "Ohnishi" $2\nu_x + 3\nu_z = N$ become visible by the misalignments.
 - It is difficult to predict the blowup in the SuperKEKB exactly, unless we • know the actual machine errors.

- separate to each other by doubling the synchrotron tune.
- Thus the source of the resonance is the chromatic x-y coupling, which is • completely removed by separated compensation solenoids at the IP.

The dark area is right below the synchrotron sidebands $\nu_x - \nu_y \pm \nu_z = N$: They

- and Fuji, within ±0.3%.
- •All rotating sextupoles around the IR are used.

LER chromatic x-y coupling correction (CC)

KE
0-

Sext	K2(m^-2)	$SK2(m^{-2})$	ROTATE(deg
SF6TRP	1.8170	7684	-7.6408
SD5TRP	-4.0138	2411	1.1460
SF4TRP	.9778	.1747	3.3772
SD3TRP	9209	2147	4.3757
SLXTRP	.2454	.3231	17.5948
SLYTRP2	2.1737	2574	-2.2511
SLYTRP1	2.1737	2574	-2.2511
SLYTLP1	2.4909	.1041	.7978
SLYTLP2	2.4909	.1041	.7978
SLXTLP	.6553	.1089	3.1459
SD3TLP	2219	.0616	-5.1710
SF4TLP	2.6047	.1633	1.1960
SD5TLP	-4.9820	.3716	-1.4220
SF6TLP	1.2915	1921	-2.8198

•The x-y coupling coefficients R1-R4 are fit to zero at the IP

No solenoid lattice

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 sler_1705_80_1-nosol_1_bb_cw_ts.sad turns = 10000, particles = 100, CW = 100%

0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

Crab waist & chromatic coupling

- Both crab-waist and chromatic x-y coupling correction are effective to suppress the beam blowup. They work differently, depending on the tune working point.
- Both crab-waist and the chromatic coupling correction should be tried in this run (ASAP). They will open the space up to 10³⁵ with the parameters presented here.
- Many things will be learnt by two beam studies to determine the future direction.
- Simulations with future parameters, ie., smaller β^* and higher bunch charge, will be tried to access the design luminosity.

 $|\varepsilon_{y0}/\varepsilon_v|$

CW = 0%

CW = 20%

0.64

0.62

0.6

0.58

0.56

0.54

- Base optics: sher_5780_60_1_A_YO3 (via Y. Ohnishi).
- runs.
- each tune.
- •
- Crab waist looks also very effective for the HER. •

• $\beta_{x,y}^* = (60,1)$ mm. $\sigma_y^* = 170$ nm, which is close to the single beam one in these

Sextpoles are optimized at (0.535, 0.585) (\star), and kept nearly unchanged for

Beam-beam + lattice (BBWS/SAD), no errors. SR is emitted turn by turn.

Thank you!