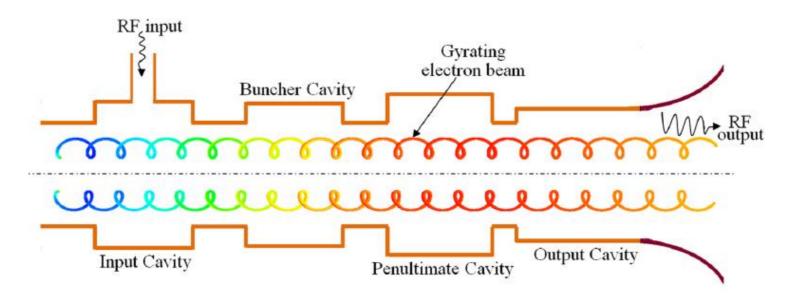


XLS – Ka Band Linearizer

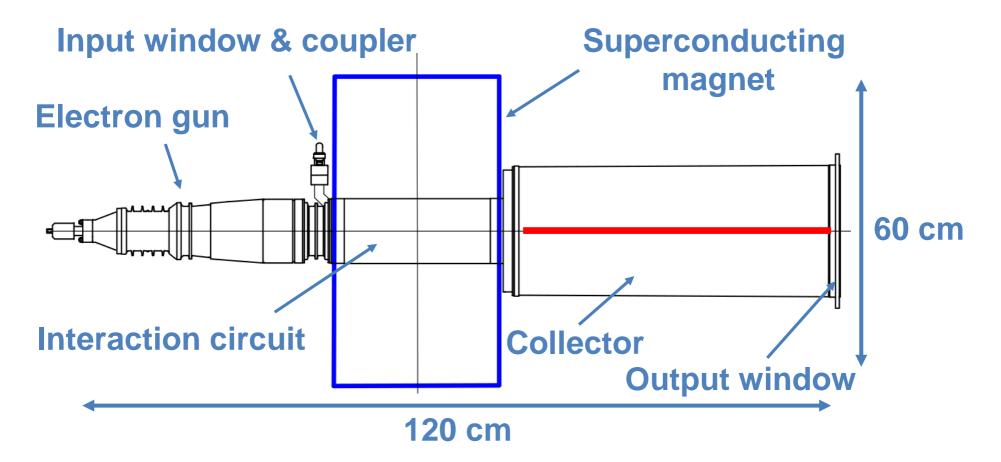
A. Castilla,

On behalf of WP3 – D3.4 working group, Glasgow Virtual Meeting – June 16th-18th 2020.

Outline


- Ka-Band RF sources:
 - Gyro-klystron.
 - Multi-Beam klystron.
- Pulse Compressor considerations.
- RF Network concepts.
- Structure options:
 - SW cavity.
 - Cryo Cu option.
 - TW structure.
- Beam Dynamics remarks.

Options for a linearizer system @300 MeV


- Bunching in azimuthal direction, TE modes.
- Lower axial velocity due to the beam alpha results in larger cavity size.
- Operating frequency determined by the external magnetic field.
- Open output cavity, high power capability

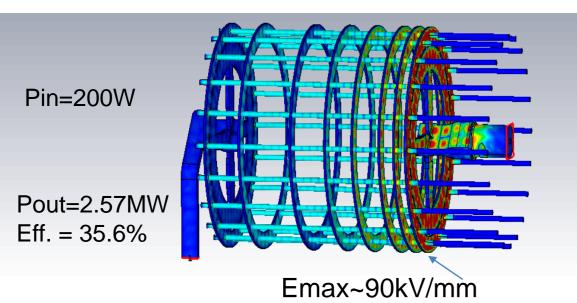
36Ghz Gyro-klystron – Layout

Output from axial direction, **Output mode TE02 in circular waveguide**

Gyro-klystron for a linearizer system @300 MeV

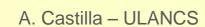
- T=1.5μs, **f=1000Hz**; U=150kV; I=50A, η=40%;
- Electron beam power **7.5MW**;
- Output microwave power 3MW;
- We ignore the loss power (for it is small);
- Power in the spent beam 4.5MW;
- Average spent beam power >6.75kW;
- Collector design for full electron beam power 7.5MW; Average spent beam power 15kW;
- Structure optimized for higher average power capability with fins;
- Average power 4.5kW, the temperature of window <40°C;
- Solenoid field (SC) 1.5 T.

36GHz Multi-Beam Klystron Topology


Amend coils to further confine the beam Compensate for **B-field shield** Small Ø 0.33m electron Gun Individual collectors for primary convergence 0.45m

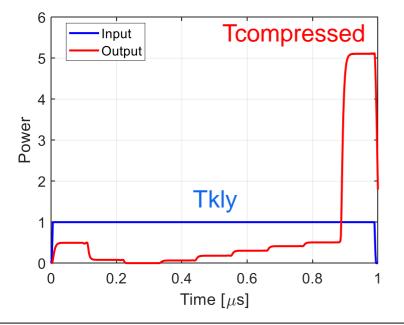
Funded by the European Union

Parameter	Value	Unit	
Voltage	60	kV	
N beams	20		
Current/beam	6	А	
Current/total	120	А	
Power in saturation	2.57	MW	
RF efficiency	37.5	%	
Power gain	41	dB	
-3dB Bandwidth	50	MHz	
Solenoidal field	~0.2	Т	
Total tube length	0.45	m	
Max. cathode current density	9	A/cm ²	
RF pulse length	1000	ns	
Max. rep. rate (diode mode)	<2	kHz	
Max. rep. rate (RF mode)	<4	kHz	

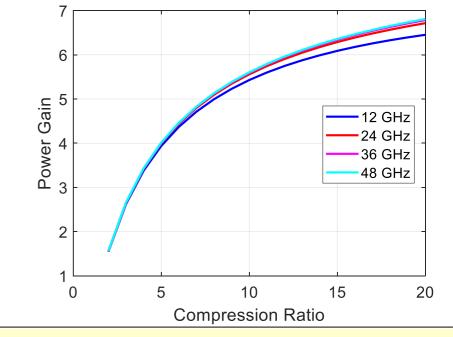

XLS-Glasgow Virtual Meeting, June 16th 2020

36GHz Multi-Beam Klystron

- GUN and Magnetic system design are almost finished. Ongoing optimizations to improve beam transmission.
- Preliminary design for Collector done, to be checked with full tube simulation in CGUN/KlyC.
- PIC simulation with practical beam optics imported from TRK will be done as a final verification (Cathode-RF circuit-Collector).
- Evaluation of the cooling circuit (feasibility analysis).



8


X. Wu, W. Wuensch (CERN)

Pulse Compressor - SLEDII

- Compression ratio= Tkly / Tcompressed.
- Similar gain curve at different frequencies:
 - Shorter structures => Higher compression ratio.
 - Longer Input pulse => Higher compression ratio.

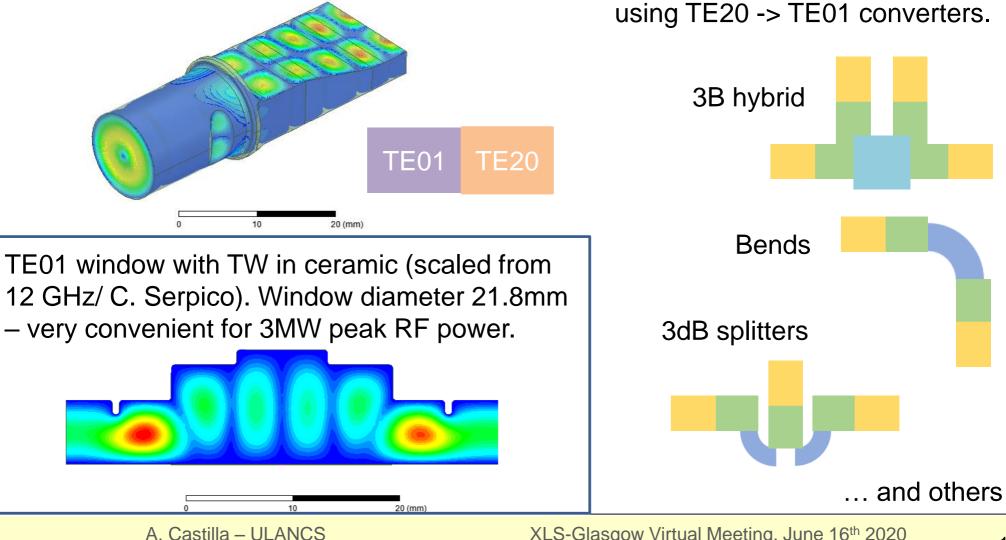
36Ghz Gyro-klystron – Pulse Compressor transmission

- Gyro-klystron baseline design is TE01/TE02 with TE02 output in circular waveguide.
- A transmission line system has also been validated.
- If PC requires a Gaussian mode, with a low loss HE11 mode transmission line. An alternative configuration can be achieved adding a quasi-optical mode launcher before the collector.
- Note: The TEM00 (fundamental Gaussian mode) has ~98% similarity with HE11 mode in corrugated waveguide and is regarded as the same mode in terms of the quasi-optical launcher design.

Ka-Band Linearizer RF Network

- Low RF losses waveguide system is strongly recommended to improve the • RF power distribution efficiency.
- RF network at TE01 mode is the optimal. ۲
 - Thorough control of the TE11 mode polarization in the various RF components is challenging.
- TE01 circular waveguide interface in all RF components is recommended to • avoid contact-gasket problems in the system with high average power.
- X-band TE01 based RF components already designed and tested at CERN: •
 - Direct scaling (x3) to 36 GHz will save lots of time.
 - Scaled down, the circular WG diameter is 12mm, with Ohmic losses of -• 0.255dB/m (5.7%/m).
 - For the long straight WG sections, diameter can be increased (matched taper) to • 20 mm (-0.035dB/m; 0.8%/m).

I. Syratchev (CERN)



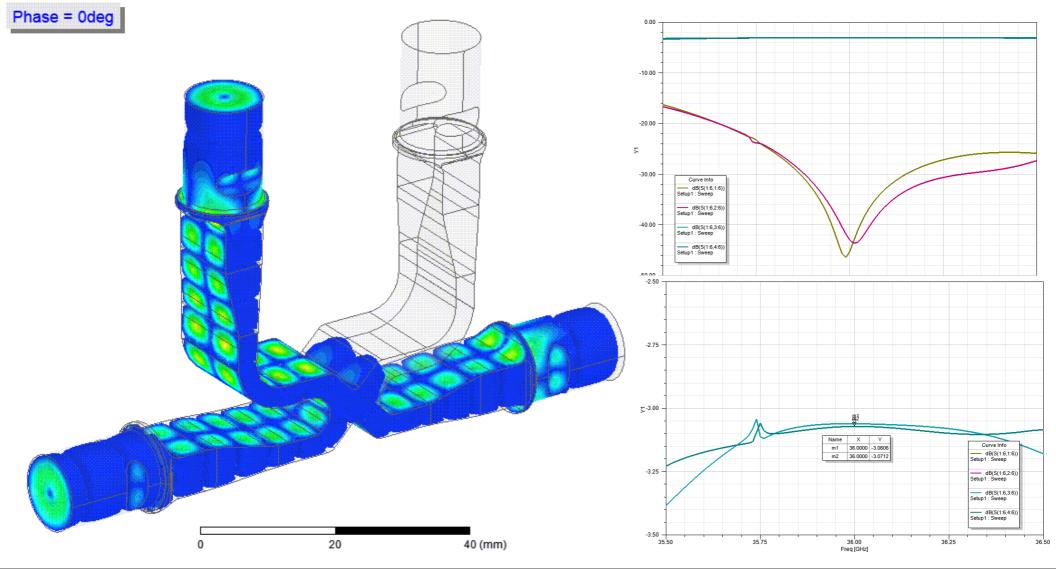
Ka-Band Linearizer RF Network

Funded by the

European Union

Basic building brick for the H01 devices is TE20 -> TE01 converter (A. Grudiev design).

XLS-Glasgow Virtual Meeting, June 16th 2020

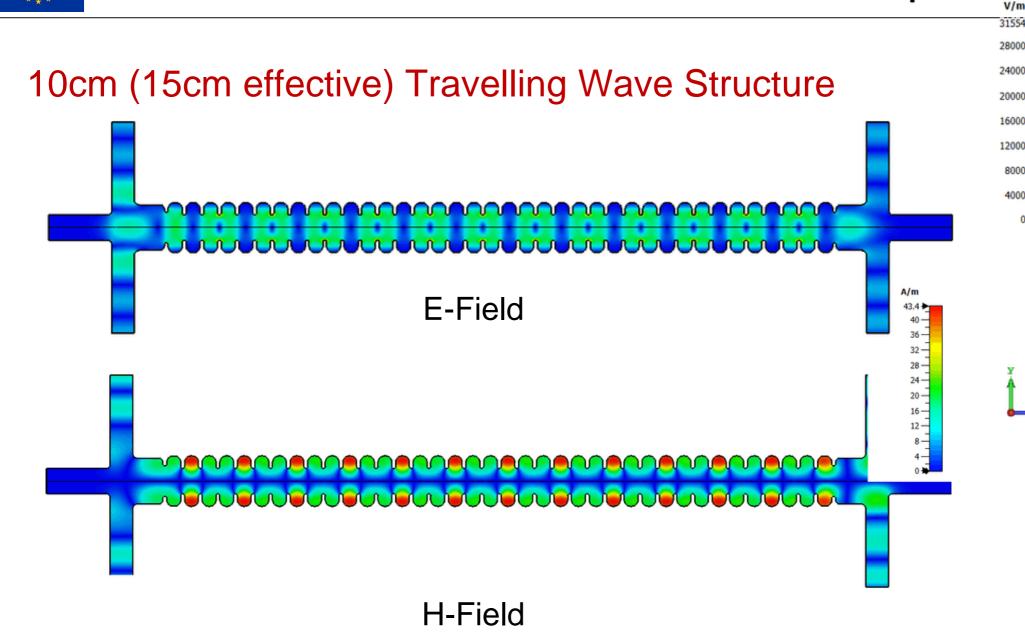

All the necessary TE01 RF

devices can be quickly designed

3dB E01-H20 hybrid. Power head for PC and/or Klystron combiner

XLS-Glasgow Virtual Meeting, June 16th 2020

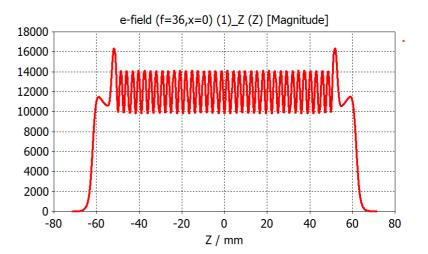
Structure Options

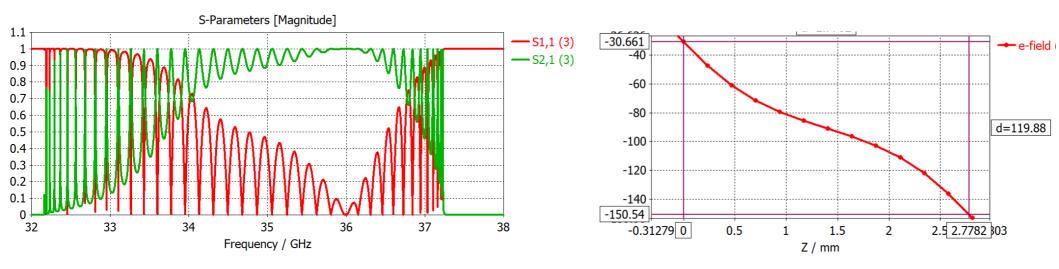

- Ka-band SW solution.
 - Considers 12MW matched input power (w/SLED).
 - Integrated voltage of 11MV/section (10cm), see: <u>link</u>.
 - If higher voltage is needed, then multiple sections are needed (i.e. for 20MV, 2 sections suffice).
 - 2 structures + hybrid needed to avoid reflections to the source.
- SW in a cryo-structure (T=77K).
 - Considers 12MW matched input power (w/SLED).
 - Integrated voltage of 16MV/section (10cm).
 - Heat load and cryogenic capacity to be checked.

Funded by the **European Union**

G. Burt, A. Castilla (ULANCS)

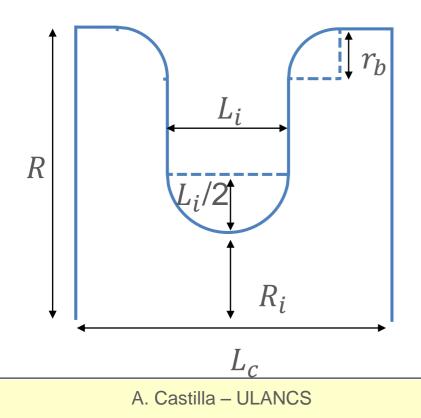
Compact





10cm (15cm effective) Travelling Wave Structure

- 5.67MV integrated voltage.
- Good matching.
- <2.5% field flatness.

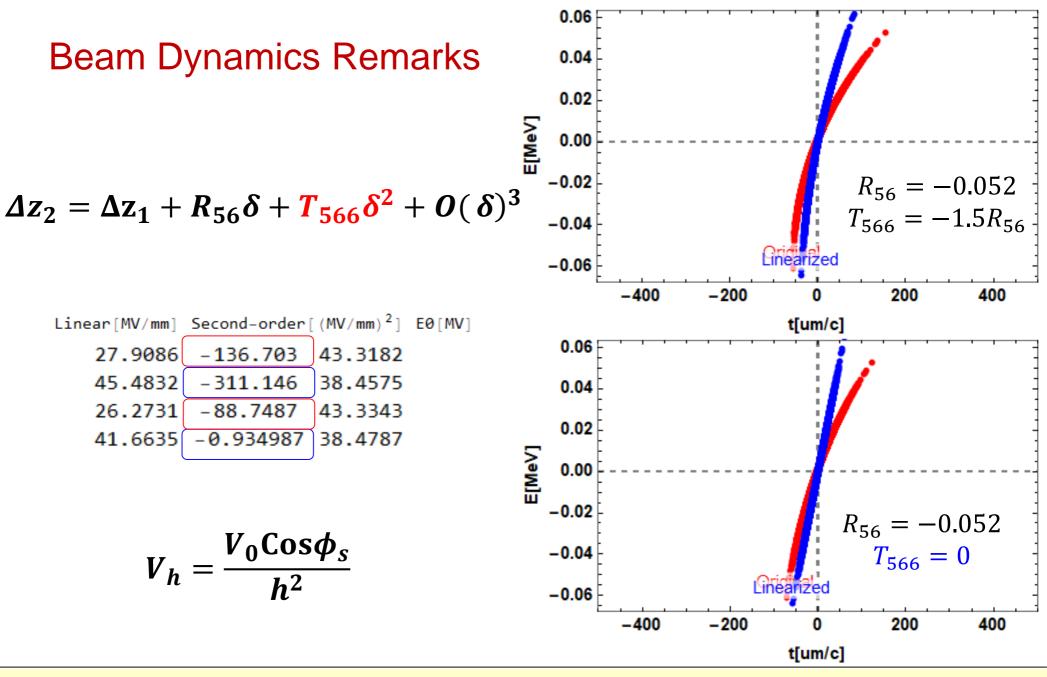


TW-Single Cell Recap

Simple cell, constant impedance.

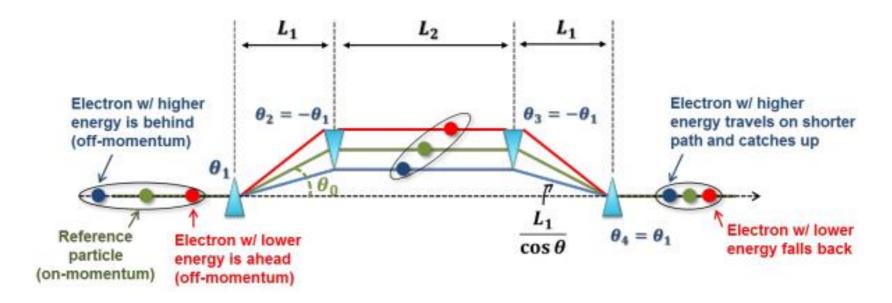
A geometry is proposed.

 $H_p \approx 205$ kA/m and $E_p \approx 148$ MV/m @57MV/m.


Parameter	Value	Units
Freq.	36	GHz
Q	4392	
r_L	106	MΩ/m
v_g	0.12	С
α ₀	0.7	m ⁻¹
E_p^*	2.6	MV/m
R	3.96	mm
R _i	2.00	mm
$L_c \ (\varphi = {}^{2\pi}/_3)$	2.78	mm
L _i	0.60	mm
r _b	1.00	mm

*normalized to $E_z = 1 MV/m$

XLS-Glasgow Virtual Meeting, June 16th 2020

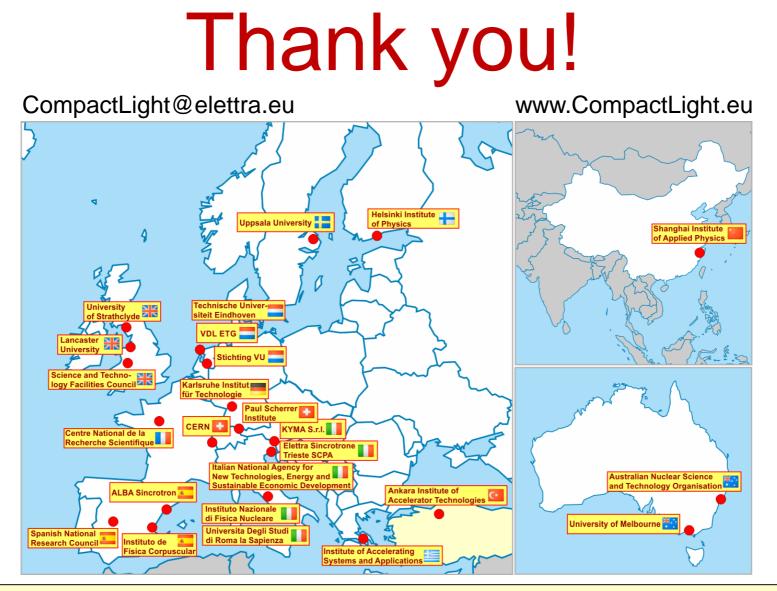

XLS-Glasgow Virtual Meeting, June 16th 2020

Beam Dynamics Follow-up Studies

- Voltage dependence on:
 - the distribution from the injector.
 - two-stage compression scheme (BC1 BC2) with longitudinal ۲ short-range wake fields.
- Design comparison on the choice of T566.

Summary

- Mature options for RF sources at the required levels.
- Pulse compressor and RF network components are either available or easy to scale to Ka-band:
 - Low loss transmission is necessary at this frequency.
- Structure options are mature up to minor detailing:
 - A two structure + hybrid set-up is necessary for a SW solution.
 - Cryogenic load needs to be checked for a Cryo-Cu option.
 - TW w/mode launcher needs wakes and multipole content study.
- Comparison criteria are being developed to down select baseline:
 - Source.
 - Structure.
- Beam dynamics needs final iteration using updated injector layout.


WP3 D3.4 - collaborators

- Adrian Cross
- Wenlong He
- Laurence Nix
- Li Wang
- Liang Zhang
- Jinchi Cai
- Igor Syratchev
- Xiaowei Wu
- Walter Wuensch

- Mustafa Behtouei
- Luigi Faillace
- Bruno Spataro
- Graeme Burt
- Alejandro Castilla
- Andrea Latina
- Xingguang Liu
- Apologies if I missed someone's name...

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

Options for a linearizer system @300 MeV

Freq. [GHz]	Iris aperture [mm]	Required voltage [MV]	Structure length [m]	Ave. gradient per cavity [MV/m]	Integrated voltage per cavity [MV/cavity]	Num. of structures [#]	Total available power [MW]
12	2.0	56.2	0.5	56.2	28.1	2	104 (2x 52)
18	2.0	25.0	0.3	83.3	25.0	1	52
24	2.0	14.1	0.2	70.5	14.1	1	44
36	2.0	6.2	0.1	56.7	5.6	1	23
48	2.5	3.5	0.1	35.0	3.5	1	14

- Changing the frequency of the injection opens some room for comparison of different frequencies.
- Ka-band seems to be in a optimal point for either choice of the injector.
- Iteration with beam dynamics undergoing, to be confirmed soon!

Structure and power considerations for the options

- Ka-band seems to be in a optimal point for either choice of the injector.
- Iteration with beam dynamics undergoing, to be confirmed soon!

Freq. [GHz]	Vg [c]	Filling time [ns]	Source output [MW]	PC gain Klystron pulse width= 700 ns	PC gain Klystron pulse width= 1500 ns	Total Power for K.p.w. 700ns [MW]	Total Power for K.p.w. 1500ns [MW]
12	0.01	333.6, (166.8)	20, 50	1.85	3.54	37, (52), 92.5, (130)	70.8, 177
18	0.01	200.1, 100.1	12	2.68, 4.39	4.67, 5.89	32.1, 52.6	56, 70.6
24	0.025	53.4, 26.7	6.7	5.68, 6.62	6.76, 7.41	38, 44.3	45.2, 49.6
36	0.12	16.7, 8.3, 5.6	3	7.05, 7.47, 7.56	7.68, 7.94, 7.97	21.1, 22.4, 22.6	23, 23.8, 23.9
48	0.3	3.3, 2.2, 1.1	2	7.69, 7.62, 7.38	8.07, 7.96, 7.68	16.1, 15.9, 14.7	16.1, 15.9, 14.7