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1. Introduction of 3D CAD MODEL Why a 3D CAD XLS model?
A 3D model provides benefits such as:

» It aids in planning and design (e.g.— conceptual design during the
conceptual phase)
» It aids in integration activities:

» The 3D models can be used to support vision sharing, and they help
discovering, resolving design issues early (e. g. clashes, interfaces,
assembly clearances etc.) and the models can be readily available for
FEA simulations

» Itis the smart modern way of design — avoiding the need for an army
of designers and engineers

» Our 3D model can range from the overall XLS layout down to detailed
models of individual accelerator components

» It can serve as a repository of the 3D designs (XLS Engineering Data
Management System-EDMS repository)

This presentation explains the modeling technique and shows examples of
model usage
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2. CAD/CAM System CATIA V5 & V6

Our CAD team has been using CATIA V5 & V6 and is available to support XLS at
the appropriate level of detail for design studies.

« This platform is typically used for medium or large technical designs as it can
handle tenths of thousands of unique designs and specs.

« User Friendly (light representations) of the models can be imported in freeware
software (Navisworks) for simple use (e.g. distance measurements, presentation
discussions) in different OS (Windows, Mac etc).

« 3D-models and 2D-drawings can be produced on the same platform with the
capability of using version control and design evolution validation
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3. 3D CAD: Study Case the XLS-Injector
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3. 3D CAD: Study Case the XLS-Injector 1.6 Cell Gun
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A preliminary 1.6 cell cavity was used
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3 3D CAD: Study Case the XLS-Injector Gun Solenoid
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3. 3D CAD: Study Case the XLS-Injector TwW Solenoids

' Deafinition of Coif in (8T
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Low Frequency Mesh = - 3

CST Magneto-Static analysis
The 3D file was imported in CST studio to perform a magneto-static simulation.
Steel-1008 was chosen for yoke material, as the lowest carbon-steel percentage available in CST library. Annealed Cu was
chosen for the coil material. Coils were defined with the CST coil tool, inserting the same amount of current, ampere turns
and resistivity as presented in the solenoid parameters. The result in the center of the solenoid on the beam axis is 0.22 T
(magnetic flux density), same value obtained by SUPERFISH also.
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Field distribution

Results H filed, B filed, Magnetic
Energy Density and comparison
with SUPERFISH results: ot
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3. 3D CAD: Study Case the XLS-Injector Injector TWS

Low carbon steel yoke 120 cells TWS Solenoids with common yoke
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3 3D CAD: Study Case the XLS-Injector Injector TWS
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Travelling wave
structures with
solenoids on
Linac O

SwissFEL girder
Reference: SwissFEL Conceptual Design Report
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3. 3D CAD example XLS-Injector with Girder

2.5 cell gun Section view until laser heater

120 cell TWS I

girder
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3. 3D CAD example with XLS-Injector for our next steps

st Full C—=band XLS Injector [@ompact™

* Oneinjector for all the operational modes (HRR and LRR) [J

2.5 C-band gun with 160 MV/m cathode peak field =>longer drift for diagnostics [

Copper cathode and TiSa Laser [

Same gradients 15 MV/m in the 2 m long C-band structures, max gain 30 MeV/str ucturel]
Same diagnostics positions (@gun exit 7 MeV and in thedrift parallel tothe LH @120 MeV) L
Same beam parameters at the linac exit [

Matchingwith LH to be deter mined(]
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«  Optimal BCL input energy (=>and position) to be deter minedl[]
Without Velocity Bunchingll

With Laser Heater lessthan 2 m long

K-band Linearizer just beforethe BCl, X-band RFD downstream BC1[]
Same beam parameters at the BC1 exit [

Matchingwith BC1 to be deter mined[]
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3 3D CAD: XLS-Injector case study

K-linearizer and X-band

Gun and injector Setup deflector to be included

WP3 - Gun
and Injector
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3. 3D CAD example with XLS-Injector X-band structure
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4. 3D CAD model for XLS based on full baseline layout

This baseline layout will be followed; taking into account any further
Improvement.
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3. 3D CAD example with XLS-Injector linac with Girder

Example of Linacs 1, 2 & 3 X-band structures on girders




Funded by the

(:J
European Union CO m p a Ct

4. 3D CAD MODEL for XLS injector in the tunnel

Tunnel roof,
in this example shown at
3.5 meters from the tunnel floor

*MCS: Machine Coordinate System
(as well as the location of the Interaction Point with
X-ray generation) will need to be defined for XLS -l —
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5. Girder Choice: Points to keep in mind

 Modular design of component “clusters” is imperative for a
compact machine

« Common girders allow for compact pre-assembly, extensive
part testing and reduce drastically the installation time

« Tolerances, machine precision and alignment degrees of
freedom will seriously impact the COSI profile of the accelerator

« Active repositioning or passive alignment is a choice dictated
by beam tolerance and machine alignment budget

* Investing in CAD design & integration combined with
supporting system study in this stage will reduce errors of
manufacturing, assembly and future needs for spares

This implies that analysis of the girders will be required

18
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| ¥ . Damping girders with high-
Prestressed isolating glrders frequency absk?‘rptlon capacny

CERN CLIC
CTF & CLEX
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5. Girder ANSYS simulation

Material: ANSYS Structural Steel for girder material
Geometry: This version of XLS girder is the exact transposition from the MAX 1V’s girder model

A: Static Structural B: Modal B: Modal
Total Deformation Total Deformation Total Deformation 2

/f 3 Type: Total Deformat on Type: Total Deformation Type: Total Deformation

J i U.n iotaslis Frequency: 76,797 Hz Frequency: 83,84 Hz

,1 ] ; : Time: 1 Unit: mm Unit: mm

i e 2020-04-15 14:25 2020-04-15 15:44 2020-04-15 15:44

0.23108 Max 40423 Max 52775 Max
0,2054 3,5932 4,6911
LT 3124 4,1047
0,15405 26040 35183
012638 2,2457 2,0319
Sl 1,7966 2,3456
0,077026 13474 17502
0,051351 0,89829 11728
0, 02:5 675 044915 0,58639
) 0 Min 0 Min
A: Static Structural
%mm(wn-hﬁm) Strass .
Density 7,85 10° kg/mm? ﬁ?g:nm Max stress concentration on the
Young’s Modulus 200 GPa i ' F :
Doiseants Rafic - AT spherical joint, between the horizontal
' 182,56 .
Compressive Yield Strength 250 MPa E?ES: Support and the IegS that allows to orient
Tensile Yield Strength 250 MPa B the horizontal plane on which the round
Tensile Ultimate Strength 460 MPa R ia

supports are mounted

Table.1 — Structural Steel parameters
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6. Requests from CAD modelers to XLS Collaboration

In order to efficiently integrate the XLS accelerator beam line elements
In the 3D model, the following information would be needed:

1. Quantity and types of beam line elements

2. Size and Position (e.g. relative to e-gun cathode) of each beam line
element and of their internal structure, where possible

3. Space needed for the beam instrumentation parts, deflectors, etc.

In order to have a 3D model of the entire facility, the scale of the
model should be given by the collaboration

All colleagues are welcome to contact us and request
CAD modelling of their parts, integration of designs, etc.!
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A compact linac does not only |
contain the accelerating parts_but < " ::w['m'fé'z?""'"”"”""“***“'v:fsfun-
also the power sources, electronics, P Se e s 7.
controls, waveguides, cooling *f o
sources etc. and assembly that

need design and space to fit in
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1. Space reservation 2. Preliminary Design

7. As-Scanned 8. As-Built & Commissioned
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