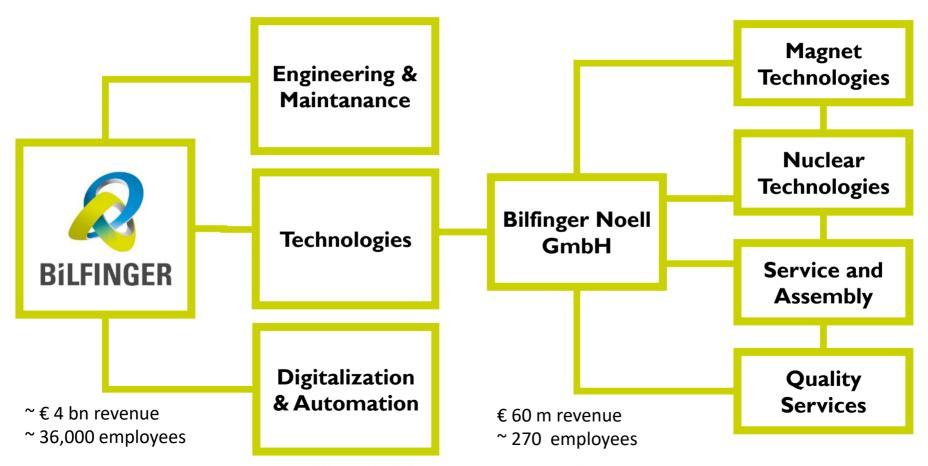


Outline

Bilfinger Noell

SCU15 and SCU20


SCU20 in operation

New devices

Summary

NOELL within Bilfinger

Synergy and stability

Bilfinger Noell GmbH – Innovation is our Tradition

BILFINGER NOELL GMBH

NOELL CORE COMPETENCES

Engineering

Multi-physics approach towards complex engineering tasks for custom design solutions

Vacuum technology

Extensive experience in the design and manufacture of complex UHV components and vacuum vessels

Cryogenics

Highly efficient design of both helium and conduction-cooled systems down to 2 K

Series production

Optimization of complex manufacturing processes from small-scale to series production

Testing capabilities

Trained personnel and specialized equipment for cryogenic and vacuum testing in-house

Magnet technology

Wide range of experience in superconducting (LTS and HTS) as well as resistive and permanent magnets

Specialized hardware

Special tooling and equipment including winding and cabling machines and furnaces for impregnation

Passion for PRODUCTS

A diverse market spectrum

ENERGY

Superconducting flywheel energy storage

ACCELERATOR

Conduction-cooled superconducting undulators

SCIENCE

PINE mobile cloud chamber

MAGNETS

Conduction-cooled superconducting solenoids

SERIES production at NOELL

A history of performance

ldeptn

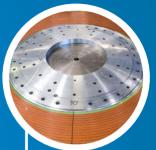
DESY HERA

STAGE COACH

MPI W7-X

LHC

CERN


GSI SIS100

DESY PETRA

DESY FLASH

CNRS LNCMI

GSI QDM

824

'50 °

1986

'98 '9¢

2008

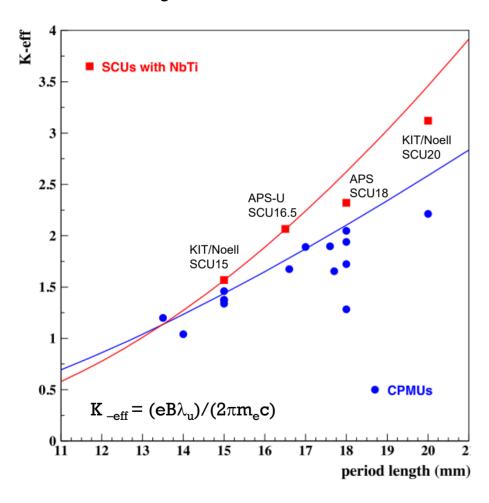
'11'12

'16

118

CUSTOM solutions

Experience in innovation



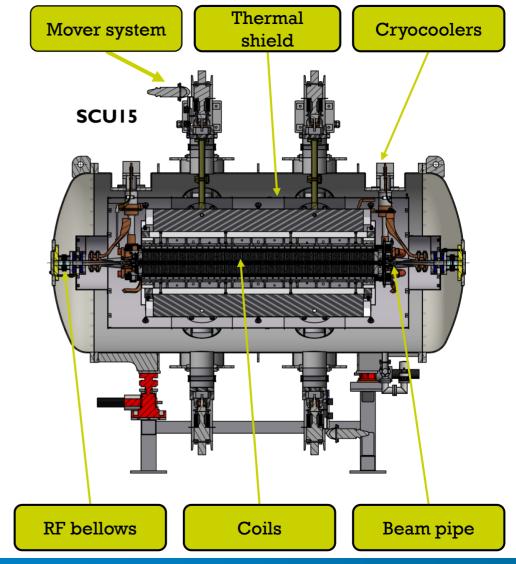
Performance of SCUs

A Proven Advantage

Higher peak field on axis for the same gap and period length in operation with electron beam.

Demonstrated higher radiation resistance compared to permanent magnet undulators.

Full potential of superconductivity not yet exploited, margins on NbTi and increased potential of Nb₃Sn and HTS.

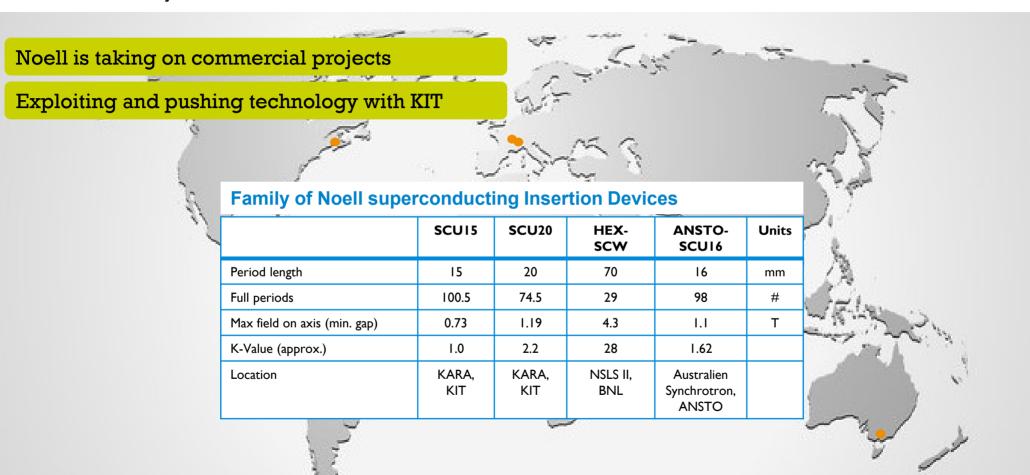

Facility	Start-finish of operations	λ_0 (mm)	# of periods	Vacuum aperture (mm)	Gap loss (mm)	B (T)
APS 2 SCUs	2015–current 2016–current	18	59.5	7.2	2.3	0.97
APS	2013–2016	16	20.5	7.2	2.3	0.8
APS Helical	2017-current	31.5	38.5	26	5	0.45
APS-Upgrade	Planned – one example	16.5	216	6	2	1.07
KIT/Accel	2005-2012	14	100	8,12,16,25 (open)	0.6 (?) (design)	0.3
KIT/Noell	2014–2015	15	100.5	7,16 (open)	1	0.73
KIT/Noell	2017-current	20	74.5	7,15 (open)	1	1.18

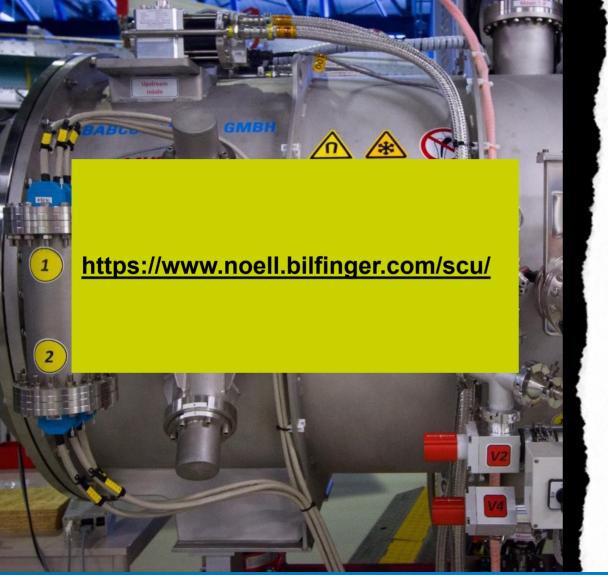
Bahrdt - Gluskin NIMA 2018

SCU15 and SCU20

Main Parameters

	SCU15	SCU20	Units
Period length	15	20	mm
Full periods	100.5	74.5	#
Max field on axis 7 mm gap	0.73	1.19	Т
Nominal current	150	395	Α
Ramp to nominal current	450	300	S
Operating vacuum gap	7	7	mm
Injection vacuum gap	15	15	mm
Beam heat load	4	4	W
Design temperature	4.2	4.2	K


SCU15



SCU20

New Devices

Worldwide activity of Noell on ScIDs

Summary

RELIABLE

SCU15 and SCU20 demonstrated long term operation in the KIT ring. SCU20 serves as source for user beamline

BRILLIANT

In terms of peak field, both SCU15 and SCU20 outperform devices with competing technologies

PLUG'n PLAY

No liquid helium required

OUTSTANDING UHV

No impact of the cold bore on beam operation

COMMERCIALLY AVAILABLE

KIT and Noell can tailor each device to customer needs

Contact

Bilfinger Noell GmbH Alfred-Nobel-Str. 20 97080 Würzburg Germany

Phone +49 931 903-6042 Fax +49 931 903-6010 noell.info@bilfinger.com www.noell.bilfinger.com

Registered at Local Court Würzburg, HRB 7156 VAT-Id. No.: DE211420259

Executive Management: Roland Pechtl

Bilfinger Noell GmbH Page 14