

Expected exclusion limits to TeV dark matter from the Perseus Cluster with CTA

Sergio Hernández Cadena & Rubén Alfaro Molina for the CTA Consortium

IWARA, GUATEMALA, 2022 10TH INTERNATIONAL WORKSHOP ON ASTRONOMY AND RELATIVISTIC ASTROPHYSICS

Contents

- 1 The Cherenkov Telescope Array
- 2 Indirect Dark Matter Searches
- 3 The Perseus Cluster
- 4 Analysis
- 5 Results
- 6 Summary

The Cherenkov Telescope Array

The Cherenkov Telescope Array

CTA is one of the next generation ground-based gamma-ray observatories

- 1. Energy range from 20GeV up to 300TeV
- 2. All-Sky Coverage: Two arrays of Imaging Air Cherenkov Telescopes (IACTs)
 - 1) CTA North [La Palma, Canary Islands, Spain]
 - 2) CTA South [Cerro Paranal, Chile]

CTA Performance

With respect to current IACT's

- 1. Better energy resolution
- 2. $10 \times$ improvement in Sensitivity
- 3. Rapid response to follow up of transients
- 4. Large Field of View
- 5. Better Angular resolution

CTA Key Science Programs

Dark matter

Dark Matter

There is a lot of evidence pointing to the existence of dark matter, but the nature of dark matter is still unknown

- 1. Rotation curve of galaxies
- 2. Gravitational lensing
- 3. Acoustic oscillations

It is estimated that dark matter represents $\approx 27\,\%$ of the content of the Universe

[SDSS-III; South Pole Telescope; Zosia Rostomian.]

horonko

telescop arrav

Indirect Searches

[Fermi Space Telescope; NASA]

- 1. Weakly Interactive Massive Particles (WIMPs)
- 2. Candidates with masses at TeV scales
- 3. Annhilation and decay of WIMPs
- 4. Continuum and line-emission spectra

Where to look for dark matter

cherenkov

telescope

Perseus Cluster

Perseus Cluster

z	0.01784	d_{L}	75.01 Mpc
M_{200}	$7.5 imes10^{14}~{ m M}_{\odot}$	(l,b)	(150.5, 13.26)
r_s	370.8 kpc	θ_{200}	$1.42 \deg$

[Gendron-Marsolais et al.; NRAO/AUI/NSF; NASA; SDSS]

NGC 1275	IC 310	
$l = 150.58 \deg$	l = 150.18 deg	
$b = -13.26 \deg$	$b = -13.74 \deg$	

[L. Frattare; Fabian et al; NRAO/VLA/NSF; NASA; SDSS]

Dark matter Modelling

[J. Pérez-Romero & M. A. Sánchez-Conde, IFT-UAM]

Gamma-Ray Emission

Observation setup

- Deep Observation: 300 h (100 reps.)
- Energy range: [30 GeV, 120 TeV]
- Software: ctools
- Gamma-Ray emission
- 1. NGC 1275 & IC 310 2. Cosmic Rays

(MINOT [R. Adam 2020])

- 3. BKG (IRF)
- 4. Dark Matter (PPPC4DMID [Cirelli, 2012])
 - 1) Annihilation
 - 2) Decay

Analysis and calculation of ULs

cherenkov

telescope arrav

ctadmtool

- 1. Based on ctools
- 2. Calculation of gamma-ray flux induced by annihilatio or decay of DM
- 3. Calculation of best fit parameters
- 4. (If not detection) Calculation of ULs for a range of masses
- 5. Results saved to a fits file
- 6. Public repository (Github):

https://github.com/sergiohcdna/ctadmtool

Annihilation

- Average value for (σ_χv)
 (~ 100 realizations)
- 1σ band. Effect of Bkg fluctuations.
- The region above the curves is excluded
- Effect of the different emission escenarios
- ES: Extended search

Annihilation

- Average value for $\langle \sigma_{\chi} v \rangle$ (~ 100 realizations)
- 1σ band. Effect of Bkg fluctuations.
- The region above the curves is excluded
- Effect of the different emission escenarios
- ES: Extended search

Decay

- 1. CTA has a unique chance of discovery for DM candidates with masses @TeV scales and close to the unitarity-limit
- 2. Results by CTA, even in the case of null detection, will complement direct and collider searches
- 3. CTA will be able to put restrictive constraints to annihilation $\langle \sigma_{\chi} v \rangle$ and decay τ_{χ} using deep observations of the Perseus Cluster

Thanks!