Simulated performance of a 55 compact IACTs array at high altitude

JOSÉ SERNA^{1†}, Rubén Alfaro¹, Jan Audehm², Thomas Bretz², G. Do², M.M. González³, Francisco González³, Arturo Iriarte³, Frank Maslowski², Yunior Pérez³, Florian Rehbein², Merlin Schaufel⁴, and Ibrahim Torres⁵

¹ Instituto de Física, Universidad Nacional Autónoma de México, Mexico

² Physics Institute III A, RWTH Aachen University, Germany

³ Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico

⁴ Physics Institute III B, RWTH, Aachen University, Germany

⁵ Instituto Nacional de Astronomía, Óptica y Electrónica, Mexico

HIGH ENERGY GAMMA-RAY DETECTION

- Charged particles
- Neutrinos
- Photons
 - Direction
 - Energy

HIGH ENERGY GAMMA-RAY DETECTION

- Charged particles
- Neutrinos
- Photons
 - Direction
 - Energy

10⁻⁴ OF
COSMIC
PARTICLES!

GAMMA-RAY EXTENSIVE AIR SHOWERS (EAS)

Development of gamma-ray air showers

GAMMA-RAY INDIRECT DETECTION TECHNIQUES

Imaging Air-Cherenkov Telescopes (IACTs):

MAGIC, HESS, VERITAS and CTA

www.magic.lac.es

Wide-Field of view Detectors (WFD): **HAWC**

Imaging Air-Cherenkov Telescopes (IACTs)

- Collects the Cherenkov light in the atmosphere
- Individual telescopes

Wide-Field of view Detectors (WFD)

- Collects the Cherenkov light in the contained water (or a specific medium)
- Extended array of several detectors

www.hawc-observatory.org

Comparison between Techniques

Imaging Air-Cherenkov Telescopes (IACTs)

- ullet Telescopes of ~ 5 m up to ~ 25 m diameter
- Collects the Cherenkov light produced in the atmosphere
- Duty cycle: $5\% \sim 10\%$
- Specific environmental conditions
 - No sunlight, no moonlight, no rain, no snow, no clouds, no near artificial lights, no albedo; just clear nights
- Angular resolution: ~ 0.01°
- Energy range: from 20 GeV up to 30 TeV
- Point-like sources
- No simultaneously observation
- High cost of production

Wide-Field of view Detectors (WFD)

- Extended arrays of detectors (hundreds of m²)
- Collects the Cherenkov light produced in the water (or another medium)
- Duty cycle: > 95%
- No specific environmental conditions
- Angular resolution: ~ 0.1°
- Energy range: from 100 GeV up to 100 TeV
- Extended sources
- Simultaneously observation
- High cost of production

HYBRID DETECTION

Identical air-showers at different heights (h)

Different signals

IMAGING AIR-CHERENKOV TELESCOPE

Different air-showers at different distances (d)

Similar signals

HYBRID DETECTOR

Better energy resolutionBeter angular resolution

Better particle identification

The main problem to develop this hybrid technique is the high cost of production

HAWC'S EYE

Proposal of a LOW-COST COMPACT REFRACTIVE IACT

 $\sim 10,000$ eur each telescope!

HAWC'S EYE

- 2 functional HAWC's Eye telescopes located at the HAWC observatory (4,100 m a.s.l.)
- 4 successful observation campaigns done

Photo: Jesús Martínez

HAWC'S EYE PERFORMANCE

HAWC'S EYE ARRAY

Due to the good results during the observation campaigns, we simulate a 55 HAWC's Eye telescopes array at high altitude (4,100 m a.s.l. as HAWC)

COMPARISON CHARACTERISTICS

The performance of the telescopes are independent of the position in the array

- The T22 has the same position that HE02 in the HAWC's coordinates
- The telescope T22 was selected to make the comparison between data and simulations

DATA VS. SIMULATIONS

The <u>Hillas parameters</u> were used to compare the simulated performance of the telescopes with the real data

WIDTH COMPARISON

Width parameter distribution

Quality cut: event's images with > 4 pixels

Data

Simulations

Reconstruction of simulated parameters <u>consistent</u> with the reconstruction of observational data

LENGTH COMPARISON

Length parameter distribution

Quality cut: event's images with > 4 pixels

Simulations

Reconstruction of simulated parameters **consistent** with the reconstruction of observational data

CONCLUSIONS

- Low-cost, compact IACT <u>functional</u> prototype <u>HAWC's Eye</u>
 with a <u>new observation technique</u>: <u>refractive telescope</u>
- Two functional telescopes already deployed at the HAWC observatory (4,100 m a.s.l.)
- An array of 55 HAWC's Eye was simulated at high altitude
- The <u>simulated performance</u> is **consistent** with the <u>observational data</u>
- Promising candidate as an extension for WFD
 - Gamma-rays: HAWC & SWGO (HAWC's Eye)
 - Neutrinos: IceCube (IceAct)
 - Cosmic-rays: TAIGA (TAIGA's Eye)

Backup Slides

The HAWC Observatory

- Located at Volcán Sierra Negra, Mexico
- Altitude: 4,100 m a.s.l.
- Duty cycle > 95%
- 300 Water-Cherenkov Detectors (WCD) and 350 outriggers

- WCD size: 7.3 m diameter and 5 m high
- WCD capacity: 200,00 L each
- 1,200 PhotoMultiplier Tubes (PMTs)
 - 4 PMTs inside each WCD
- Energy range: from 300 GeV to 250 TeV

- $^{\circ}$ Angular resolution $\sim 0.1 ^{\circ}$
- Instantaneously FoV of 2 sr
 - 2/3 of the visible sky
- HAWC's footprint:
 - $\sim 22,000 \text{ m}^2$
 - ($\sim 100,000 \text{ m}^2$ with the outriggers)

hawc-observatory.org

HAWC's Eye

Photo: Jesús Martínez

- Compact IACT (Bretz, 2018)
- Fresnel lens $f \approx D \approx 0.5 \,\,\mathrm{m}$
- Camera: 61(+3) SiPMs
 SenseL MicroFJ based
 pixels
- Solid PMMA hex-to-square light-guides (Winston cones)
 - 100% collection area covered
- FoV: $1.5^{\circ}/Px \sim 12^{\circ}$ total
- FACT DAQ system (Anderhub, 2013)
- 72 DRS4 DAQ channels
- Remote control
- Cost: $\sim 10,000$ eur per telescope

HAWC's Eye Array Simulation Setup

- Simulated performance of the 55 telescopes in the array
- Extensive air-showers simulated with CORSIKA v7.69
 - Showers induced by protons
- > 3 millions of events simulated
- Energy range: 1 TeV to 100TeV
- Altitude 4,100 m a.s.l (as HAWC)
- Atmosphere model: US standard atmosphere (7)

- Vision cone: 8°
- Dispersion area of the simulated showers: $500 \times 500 \text{ m}^2$
- Data analysis made with MARS

Hillas Parameters Reconstruction

No significant deviations of the Hillas parameters between telescopes are no visible as expected (Serna-Franco, 2021)

Event Cores' Distribution in the Cameras

Distribution of the event's cores in the camera Quality cut: event's images with > 4 pixels

Simulations

Similar results between data and simulations, but more simulated events needed

Comparison of Variables

HE02

HE02 discrepancies

Low-signal spots consistent with hardware issues (as expected)

A high-signal spot appeared and it is due to a calibration problem in a pixel (or neighborhood pixels)

All the differences can be explained by calibration or hardware issues