

Design low Q radio frequency (RF) cavity beam position monitor (BPM) for CLIC main linac.

Progress overview

N Joshi¹, S Boogert¹, A Lyapin², A Morgan³, R Guenther³ j.nirav@rhul.ac.uk

¹ Royal Holloway University of London,
² University College London,
³ DIAMOND, RAL.

What is RF cavity BPM ?

CLIC parameters and BPM requirements

BPM Project

RF design and hardware (DIAMOND cavity BPM project)

□ RF Cavity and coupler design

- Monopole suppression.
- Dipole mode extraction.

RF electronics

- Signal attenuation/amplification
- Heterodyne detection
- Noise reduction

Engineering and Fabrication

- Vacuum compatibility
- \circ Heat dissipation

System testing (DIAMOND)

• RF parameters and vacuum testing.

Data analysis and System calibration (Cavity BPM system as ATF)

- Calibration techniques
- o Noise removal
- Signal overlapping
- Digital down conversion
- Filtering and amplitude measurement

As CLIC is scheduled to be operational 20 ears, hence all fundamental techniques should be studied at machine which are in operation.

RF design and hardware

BPM development project at DIAMOND.

BPM cavity with beam pipe and coupler with feed-through

Waveguide coupler with feed-through

RF design and hardware

Electric fields inside BPM cavity and coaxial coupler

RF design and hardware

S-parameters of BPM (PEC model without coaxial feed through)

DIAMOND BPM parameters	
Monopole frequency	4.5 GHz
Monopole suppression	-55 dB
Dipole frequency	6.5 GHz
Frequency separation between X and Y position data	8 MHz
Signal attenuation at feed through output	7.5 dB
X and Y plane isolation	8 dB

ATF machine layout

□ 35 BPM at various places on ATF2 linac.

D Bunch separation $\sim I \mu s$.

Signal analysis and amplitude determination.

88

System calibration

 \Box BPM system resolution ~ 5 μ m.

Multi-bunch data at ATF.

Conclusions

RF design and hardware (DIAMOND cavity BPM project)

- RF cavity design is been completed and is in engineering realisation & fabrication stage. Participating in this project gave me extensive on hand experience on RF cavity BPM system fundamentals
- Electronics development is also undergoing as well.

System testing (DIAMOND)

✓ Will be performed for DIAMOND RF cavities in upcoming few months.

Data analysis and System calibration (Cavity BPM system as ATF)

- ✓ A code is developed to get RF cavity data from ATF BPM system.
- Similar code to perform system calibration.
- Multi-bunch data with signal overlapping is under examination and expected to complete in one month.

Future plan

CLIC main linac Q cavity design fabrication, possibly testing at CTF3.

With these experience in various areas of BPM project, recently we have started working for our project as the signed MOU.