Development of a beam profile monitor for CLIC using laser-wire systems

Thomas Aumeyr

Royal Holloway University of London

Laser-wire systems

- Measuring transverse beam profile
- Essential for determining transverse beam emittance
- Focused laser beam scans across particle beam
- e^{-} -machines: \rightarrow Compton Effect
 - laser photons scattered by e⁻ are detected as gamma rays in a calorimeter
 - Scattered e⁻ over-focused by magnets
- H⁻-machines: \rightarrow Photo-ionisation of H⁻ into H⁰
 - H⁰ and/or released e⁻ detected downstream

PETRA-III

- Newly completed accelerator at DESY, Hamburg
- World's most brilliant synchrotron light source
- Understanding emittance important to achieve ultimate performance
- Beam size: ~10 μm

PETRA-III

3rd generation synchrotron radiation source

Parameter		Value		Unit
Energy	E	6		[GeV]
Circumference	С	2304		[m]
Horizontal emittance	ε _x	~1		[nmrad]
Vertical emittance	εγ	~0.01		[nmrad]
Train repetition rate	f	130.2		[kHz]
Number of bunches per train	N _{train}	960	(40)	
Interbunch spacing		8	(192)	[ns]
Bunch length RMS	L_{b}	~12		[mm]
Number of electrons per bunch	N _e	0.25	(12)	×10 ¹⁰

Laser-wire @ PETRA-III

- Installed in early 2009
- Green laser light (λ =532 nm)
- Produced first data within a week
- Using a vertical optical table: vertical and horizontal scans possible
- Current emphasis: automation and integrating into PETRA system
- Next step: taking and analysing data in the context of P3 optimisation

Overview of LW layout

The laser-wire system at PETRA-III is 2D bunch profiler: laser beam can be sent to collision in horizontal or vertical plane

Optical scanning components

 Nd:YAG laser (1064 nm, frequency doubled)

Parameter	Value	Unit
Pulse energy at 532 nm	60 ± 5	mJ
Peak power at 532 nm	12 ± 1	MW
Repetition rate	20	Hz
Pulse duration	5 ± 1	ns
RMS pulse jitter (rel. to ext. trigger)	1	ns
Mode quality factor (M ²)	2.68 ± 0.05	
Horizontal angular jitter	18.8	μrad
Vertical angular jitter	9.4	μrad

- 2" high reflective static mirrors, 2 scanning mirrors
- Horizontal scan: 750 mm lens
- Vertical scan: 250 mm lens
- 3 webcams with alignment crosses (monitor laser-alignment remotely)

Laserhut - photo

Laser transport - photo

Breadboard housing - photo

Breadboard layout

During shutdown in May 2009 motorised translation stages (T1-T11) were positioned with laser aligned for IP.

Breadboard layout - photo

Calorimeter - photo

Scan Types

- Transverse scan using piezo $\leq 1 \ \mu m$
 - Scanning range: < 1 mm</p>
 - After moving the stages into place:
 20 steps and 5 shots per step = 5 * 50ms * 20 = 5s
- Transverse scan using motorised stage, resolution $\leq 1 \, \mu m$
 - Scanning range: 25 mm
 - 500 ms overhead for stepping the stages:
 20 steps and 5 shots per step = (5 * 50ms + 500ms) * 20 = 15s
- Longitudinal scan using motorised stage
- Knife-edge scans to check waist and Rayleigh range of laser
- Can adjust laser timing and laser power

Vertical scan

Horizontal scan

Outlook

- More automatic operation of LWDAQ (selfoptimising scans, beam finding, laser timing adjustments, piezo calibration, etc.)
- Online analysis of beam size (understanding other errors and including corrections)
- More data taking!
- Displaying results (BKR, TINE)