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e Bias voltage applied to substrate and p-wells
e Best sensor performance expected at -6V / -6V

e Simulation shown here were only made at this bias
voltage

From Magdalena’s electrostatic
TCAD simulations
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"7, ALLPIX SQUARED +TCAD SIMULATIONs (7)) @

Simulation of full detector response

e Allpix Squared (APSQ) is a Monte Carlo simulation
framework for silicon vertex and tracker detectors

e 3D electrostatic TCAD simulations are needed to
model electric field which is imported into Allpix
Squared simulations

= High statistics and accurate field modeling
® Validation of simulation with Investigator test-chip

Transient simulation l

(developed within ALICE ITS upgrade)

® Previous simulations of CLICTD with APSQ+TCAD were performed with a
simplified charge collection model

® Now: induced current on collection electrode is simulated (transient
APSQ+TCAD simulations)

® Limited lifetime of charge carriers in APSQ not simulated (yet)

Mnany thanksto |
fSimon + APSQ t
f: developer team  §

® Simulation time / event (not optimized!):

®* APSQ + electrostatic TCAD: seconds

® Transient TCAD: hours



WEIGHTING POTENTIAL IN APSQ &y é

® Induced charge: 0., = Q(¢w(7l) _ ¢W(72)) Weighting potential - continuous n-layer
—120 =
- =
* With weighting potential: ¢, = A¢y/AU ‘5 100 -
See back-up slide — _9
N 80 S
® Obtaining the weighting potential from TCAD:
60 >
® Simulate electrostatic potential with TCAD for 40 E
0.8V and 0.81V at the collection diode D
O
20 =
® Subtract the two electrostatic potentials Ag, at 0
every APSQ mesh point 0O 20 40 60 80 100 1 20
X [bins
® Divide by the collection diode voltage [ ]
difference AU =001V Weighting potential - continuous n-layer
| Many thanks to Magdalena for aII TCAD i f =
¥ simulations shown in this talk = 0.8 @
06 &
(@)
® High weighting potential values are concentrated 0.4 =
) T C
around collection electrode <)
0.2 %—’
®* Influence of neighboring pixel cells assumed to be
small (1X1 Welghting potentla| is Used) but still has to OO 20 40 60 80 100 120 140 0
be confirmed in simulations Y [bins]
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VALIDATION - CONTINUOUS N-LAYER ()] €1®

-9
¢ TO Validate APSQ+TCAD SimUIatiOnS, same IZI XI1 IOI — 1 r 1]t rrrr1rrr1
simulation conditions as in transient TCAD are — TCAD res”.lts fro.m Ma_gda'e“a 3
. 4+ i transient simulations i
replicated: c 6L _
3 I —— TCAD |
® Charge carriers are injected along a straight line at the :ts i —— APSQ + TCAD ]
pixel corner (DepositionPointCharge instead of O -} Only electrostatic TCAD
., . simulations were used for
deposition with Geant4) '8 4 _ APSOLTCAD
S 1| _
® Only the epitaxial layer (30 um) is simulated _g I |
£ _
®* Fixed amount of charge carriers (no Landau fluctuations i
and no secondaries) : 63 charge carrier / um -

® Simulation repeated 100x and mean current pulse is

computed .
Time [ns]
Electron density Electron density
0.015 _ / 0.015 [ — 60
E _FTnsafter % E [ 2nsafter - .
; n Injection e ; - Injection - ';:-
0.005 [— 0.005 — - "- = — 40
- s - -

0 — 0 — i <| 30
_0.005 f_ 20 ~0.005 f— 20
-0013— 10 -0.015— 10
0.01 - P E R T 0 _0'01%4:6 - I T 0

e %.46 0.48 05 0.52 x [mm‘]54 ’ ’ ’ ’ X [mm]
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VALIDATION - CONTINUOUS N-LAYER

Electrostatic potential:
Continuous N-type implant

minimum visible

® Collection of charge carriers in the field
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TEE"INTEGRATED CHARGE - CONTINUOUS N-LAYER ()
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® Deviations (max. ~10 e) arise mainly from current pulse
differences in the first couple of ns



VALIDATION - GAP IN N-LAYER D)) ﬂb

N,
x10~°
| p—| . ! ! I I ! ! ! ! ! ! I I I ! ! I J —]
. | < 20f .
A finer TCAD mesh was required to get a = Wi - ]
good agreement between APSQ+TCAD and qt) I o APSQTCAD i
transient TCAD for the process with gap in 3 151 ]
the n-layer 5 I ]
o 10p B
® Charge carriers propagate directly to the _g - -
collection electrodes instead of a field C & B -
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GiEsSeN VALIDATION - GAP IN N-LAYER
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INTEGRATED CHARGE - GAP IN N-LAYER
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® Faster convergence to charge saturation value

® Onset of saturation plateau for continuous n-layer: ~30 ns

® Onset of saturation plateau for gap in n-layer: ~10 ns
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DIFFERENT INJECTION S én
POSITIONS ACROSS PIXEL

® So far, only the worst case (particle impinging on pixel corner)
was simulated

Corner Long edge
Center  Shortedge

" *

® For a more realistic picture: four different injection positions and
randomized injection over the entire pixel cell is simulated 37.5 um *

®* Same amount of charge carriers are injected (no Landau

fluctuations) -> could be easily changed once simulations are v %
. < >
validated 30.0 um
Continuous n-layer Gap in n-layer
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DIFFERENT INJECTION Sl |-
POSITIONS ACROSS PIXEL  coei cong e

Center  Shortedge

" *

® As expected, gap in n-layer has a strong impact on current
pulse for injection in pixel corner and at the short edge

37.5um ) ¢ ) ¢
® Effect on randomized injection position visible as well
v
< o
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DIFFERENT INJECTION O\,
POSITIONS ACROSS PIXEL  cooo.  1ongccor

Center  Shortedge

R *

® Integrated charge curves have less spread for gap in n-layer

- ° ° P ° ° ° ° °
Injection position in pixel has less influence on the timing 37.5 um * ) ¢
spread
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RANDOMISED INJECTION
POSITIONS ACROSS PIXEL
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® If injection position is randomized timing improvement by
introducing the gap is still visible

® In particular, the tail to large time values is reduced
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® Electric field and weighting potential obtained from
electrostatic TCAD simulations are imported into
APSQ

® First transient APSQ+TCAD simulations for CLICTD
exhibit good agreement with transient TCAD
simulations

®* Weighting potential mostly concentrated around the collection electrode

® Faster signal formation for gap in n-layer process also observable when
injection position is randomized

17
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OUTLOOK

® Simulation of lower absolute bias voltages

® Estimation of sensor timing performance to compare against
test-beam and laboratory results

® Full detector simulation with minimum ionizing particles

Annika Vauth (+ APSQ
DESY team) are
working on the

implementation of a
CSADigitizer

® For this, we need a (simplified) simulation of the (CLICTD) front-end

® Challenging for our case owing to the non-linearities in the read-
out which we have seen in the laboratory

Thank you very much!

Special thank you to everybody who
contributed to this work
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INTRODUCTION: WEIGHTING FIELD S|

Disclaimer: This slide only motivates the

basic concept of a weighting field (and — o 4
the Ramo-Shockley theorem) in order to U
follow the talk.
Kolanoski, Wermes 2015
total potential potential without charge potential of point charge
® For static (or low-frequency) electric field, field energy d(F) = ¢o(r) + ¢q(7)

can be separated in the same manner: W, = Wi + W
q

® No change in total field energy when charge is moving:

0= dWE — dWEO + dWEq — UdQ + qfod}_f) (External electric field assumed to be static)

— dQ = — q—od? (work on charge comes from the external electric field)
U
® By introducing a weighting field and a weighting potential: ¢,=¢/U |; E,=—-Vao,
® The induced current can be expressed by the propagation
of the charge in the weighting field :
iid — qEW 14
I
Qid = I — 6](45(71) — 45(72)) See academic training lecture by W. Riegler
f (https://indico.cern.ch/event/843083/)
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