

Non-linear optimization of the BDS using MADX-PTC

R. Tomás in collaboration with J. Resta, D. Schulte & F. Zimmermann

CLIC - 7th of February 2006

Non-linear optimization of the BDS using MADX-PTC - p.1/12

Motivation & contents

Compensate the residual high order aberrations of the FFS to increase luminosity

- Analytical computation of beam sizes at the IP
- The beam sigmas order by order
- Optimization of beam sizes
- What about the usable luminosity?
- Outlook

Computation of beam sizes at the IP

Given the transfer map between one location of the accelerator and the IP in the form:

$$x_{IP} = \sum X_{jklmn} x^j p_x^k y^l p_y^m \delta^n$$

and given the particle density at the initial location, the rms beam size at the IP is given by:

$$\sigma_{IP}^2 = \sum X_{jklmn} X_{j'k'l'm'n'} \int x^{j+j'} p_x^{k+k'} y^{l+l'} p_y^{m+m'} \delta^{n+n'} \rho dv$$

The integral is performed depending on ρ and the X_{jklmn} are obtained to arbitrary order from MADX-PTC (thanks to E. Forest, F. Schmidt, et al).

The beam sigmas order by order

Nominal FFS design and beam parameters

Biggest contributors to vertical size

Contribution to σ_y^2	j	k	1	m	n	j'	k'	1'	m'	n'
6.109200e-19	0	0	1	0	0	0	0	1	0	0
-1.43715e-19	0	0	1	2	0	0	0	1	0	0
1.221256e-19	1	1	0	1	1	1	1	0	1	1
1.166679e-19	0	2	0	1	1	0	2	0	1	1
1.035384e-19	0	0	0	1	0	0	0	0	3	0
-1.02905e-19	0	2	0	1	1	0	0	0	1	1
9.762807e-20	0	0	1	0	0	0	0	1	0	2
-8.07838e-20	2	0	0	1	1	0	0	0	1	1
7.476994e-20	0	0	0	1	0	0	0	0	1	0
7.189904e-20	2	0	0	1	1	2	0	0	1	1
6.807446e-20	0	0	0	1	1	0	0	0	1	1
-6.58350e-20	0	0	0	1	2	0	0	0	1	0
Third and Four	tho	rdo	r to		0.20	the	haa	THO	at off	0 11

ear

Optimization of the beam sizes

MAPCLASS is a Python code that:

- Generates/reads MADX input/output
- Computes σ_x and σ_y from map coefficients
- Uses either SVD or the Simplex algorithms to optimize the sigmas[†]

Four examples follow on the optimization of the FFS by varying strengths. Luminosity is computed for the different cases with PLACET without SR.

[†] in general any quantity can be optimized

Using only the sextupoles

A small adjustment in the strengths of the 5 sextupoles gives a 12% reduction in σ_x leaving σ_y unchanged. Luminosity increase of 4%

Plus 1 sextupole, 1 octupole & 2 decapoles

With a total of 9 parameters σ_x and σ_y are reduced by 12% and 17% respectively. Luminosity increase of 5% \Rightarrow Not corresponding

Plus using the strength of the quadrupoles

Pushing the envelope

With a total of 21 parameters σ_x and σ_y are reduced by 24% and 15% respectively. Luminosity increase of 35% $(\beta_x^*=5.2\text{mm} \approx -26\%, \beta_y^*=86.5\mu\text{m} \approx -5\%)$

What about the usable luminosity?

 $L_{1\%}$ is the luminosity of the particles with an energy larger than $0.99 \times E_{peak}$, the *usable* luminosity.

Case	$-\frac{\Delta\sigma_x}{\sigma_x}$	$-\frac{\Delta\sigma_y}{\sigma_y}$	$\frac{\Delta L_{tot}}{L_{tot}}$	$\frac{\Delta L_{1\%}}{L_{1\%}}$	$\frac{L_{1\%}}{L_{tot}}$
Nominal	0	0	0	0	35
Only sexts	12	0	4	5	35
Sexts, oct & decs	12	17	5	13	38
Full I	16	18	17	14	34
Full II	24	15	35	15	30

(All numbers are percent)

 \Rightarrow Looks like $L_{1\%}$ is mostly affected by σ_y

Outlook

- Use more parameters and evaluate different optics
- Consider synchrotron radiation
- Optimize the full BDS at the same time (the non-linear collimation already optimized independently, see Javier's talk)
- Improve the model with $\langle xy \rangle$, $\langle x^3 \rangle$, $\langle y^4 \rangle$,...?