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Interacting QFT

QED Lagrangian
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We will work on Feynman gauge.



Scattering amplitude

Let |@> be the initial (multi-particle) state (¢t — —o0).
Let 1f) be some final (multi-particle) state (t — oo)

After a long time, the initial state involves into .S ‘Z> .

The amplitude for this to be ‘ f> is the S-matrix element:
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The probability is proportional to ’<f‘ S |Z> ‘2



The perturbative expansion of S implies that
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where
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measures the genuine scattering amplitude for distinct |Z> and ‘f> :



QED Feynman rule

e draw all possible diagrams with allowed vertices and momentum conserved at each vertex
eexternal line
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QED Feynman rules (cont.)

* relative minus sign between graphs with two identical fermions i.e. those that differ
by exchange of the two fermion

* in loop diagram, have unconstrained integral over internal momentum
e “-” sign for closed fermion loop

*Devide by symmetry factor for loop diagram — to account for identical contributions



Example: electron-positron scattering




To compute the differential cross section, we need an expression for ‘M’Z - MM*

MP = 5 (57 0 0 " ) (@ R’ () K ()

Note that we use (Q_J’VMU)* — Z_If}/’u?).

In most experiment electron and positron are unpolarized, so we average over their spins.
Muon detectors are normally blind to polarization, so we sum over muon spins
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The spin sums can be performed using the completeness relations
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For example, we get
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= trace[(§f — m)y* (¥ + m}y"].
After some calculations, we arrive with
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This can simplify further by using trace theorem for the gamma-matrices:

tr(1) = 4
tr(any odd; #ofvy's) = 0
tr(y"7") = 4g""
tr(Y#v"y"7) = 49"9"7 — 9"’ 9" + 9" 9"")
tr(y?) = 0
tr(y/9"9") = 0
tr(y#"yP7y°) = —4ietP



Let us return to the square matrix elements. The electron part will give

tr [( " — me)V" (+me)y”] =4 [p™p” +p"p" — g" (p.p' + m?)].
Similarly, the muon part will give

tr [(& + mp)yu (A —me)v] =4 [kuk;/ + kvk’; — g (kK + mi)} :

We get the simple result

4 ™
—Z|M| pe [<p Y@ K+ @ )@ k) +mip-p)].

spins

- /

Me 1
my, 200




K| = /B2 = m?
p=(E, E3) 4 \/ m;

Nl ~
> o k-2=lk|lcosh

We can now rewrite
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The scattering cross section can be written as
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Integrating over solid angle, we find the total cross section:
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Mandelstam variable and channel

s-channel: o M x

f-channel:
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u-channel: / \‘ M x
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