$$\mathcal{L}_{EW} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4}\mathbf{W}^{\mu\nu}\cdot\mathbf{W}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu} + \mathcal{L}_{\Phi}$$

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi|^{2} - \mu^{2}|\Phi|^{2} - \lambda|\Phi|^{4} + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{QCD} = i\bar{\psi}_{a}\gamma^{\mu}D_{\mu}^{ab}\psi_{b} - \frac{1}{4}G_{a}^{\mu\nu}G_{\mu\nu}^{a}$$

Beyond Standard Model Physics

At the LHC Piyabut Burikham

The SM

- Quantum gauge theory of 3 "fundamental" interactions, gravity excluded.
- Gauge group: SU(3) SU(2) U(1)
- Unitary group of [color weak hypercharge]
- Verified only up to 100 GeV energy (Tevatron)
- But dimensional analysis suggests quantum gravity scale ~10^18 GeV
- New Physics inevitable! (but somewhat remote)

$$\mathcal{L} = \mathcal{L}_{EW} + \mathcal{L}_{QCD}$$

Before Symmetry breaking

$$\mathcal{L}_{EW} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4}\mathbf{W}^{\mu\nu}\cdot\mathbf{W}_{\mu\nu} - \frac{1}{4}B^{\mu\nu}B_{\mu\nu} + \mathcal{L}_{\Phi}$$

$$\mathcal{L}_{\Phi} = |D_{\mu}\Phi|^{2} - \mu^{2}|\Phi|^{2} - \lambda|\Phi|^{4} + \mathcal{L}_{Yukawa}$$

$$\mathcal{L}_{QCD} = i\bar{\psi}_{a}\gamma^{\mu}D_{\mu}^{ab}\psi_{b} - \frac{1}{4}G_{a}^{\mu\nu}G_{\mu\nu}^{a}$$

$$\mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} - g\mathbf{W}_{\mu} \times \mathbf{W}_{\nu}$$

$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - igf^{abc}G_{\mu b}G_{\nu c}$$

Gauge fields: B (hypercharge), W (weak), G (gluon)

Cov.Derivative:

Dynamics&gauge interactions, generators T, Ts

$$D_{\mu} = \partial_{\mu} + ig\mathbf{W}_{\mu} \cdot \mathbf{T} + ig'\frac{1}{2}B_{\mu}Y$$

$$D_{\mu}^{ab} = \partial_{\mu}\delta^{ab} + ig_{s}\mathbf{G}_{\mu} \cdot \mathbf{T}_{s}^{ab}.$$

Representation matters!!

- Fermions in fundamental representations
- Gauge bosons in adjoint representations
- SM Higgs in fundamental representation
- Representation = a way fields group together forming single multi-component field
- Can we have adjoint fermions(SUSY), scalars(SUSY, extraD) in nature? → New Physics

Particle contents

$$\begin{array}{lll} \psi_L^j & = & \left(\begin{array}{c} \nu_L^j(u_L^j) \\ \\ \ell_L^j(d_L^j) \end{array} \right) \\ \\ \psi_R^j & = & \nu_R^j(u_R^j) \text{ and } \ell_R^j(d_R^j) \end{array}$$

$$\Phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$$
 Yukawa coupling
$$= \exp\left(\frac{i\zeta(x) \cdot T}{v\sqrt{2}}\right) \begin{pmatrix} 0 \\ (v + H(x))/\sqrt{2} \end{pmatrix}$$
 potential selects vacuum

- 3 generations of fermions (all detected) Why??
- Scalar doublet, with Yukawa couplings
 - Self-interacting

$$\mathcal{L}_{Yukawa} = -\frac{\sqrt{2}}{v} \left[M_{ij}^d \overline{\psi_R^{di}} \Phi^{\dagger} \psi_L^j + M_{ij}^u \overline{\psi_R^{ui}} (i\tau_2 \Phi^*)^{\dagger} \psi_L^j \right] + \text{ h.c.}$$

	T	T_3	$\frac{1}{2}Y$	Q
$ u_{eL}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0
e_L	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-1
u_L	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{2}{3}$
d_L	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{6}$	$-\frac{1}{3}$
e_R	0	0	-1	-1
u_R	0	0	$\frac{2}{3}$	$\frac{2}{3}$
d_R	0	0	$-\frac{1}{3}$	$-\frac{1}{3}$

	T	T_3	$\frac{1}{2}Y$	Q
ϕ^+	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
ϕ^0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	0

EW Gauge charges

- Left-handed fermions form weak SU(2) doublets.
- Right-handed fermions are weak singlets.
- Left and Right have different gauge charges T, Y
- But same Q (electric charge)
- $Q = T_3 + Y/2$
- Observe: no right-handed neutrino → extended SM includes a number of v_R (first BSM physics at Kamiokande, "neutrino has masses!")

EW breaking: $SU(2)_L$ $U(1)_Y \rightarrow U(1)_{em}$

$$\mathcal{L}_{Yukawa} = -\frac{\sqrt{2}}{v} \left[M_{ij}^d \overline{\psi_R^{di}} \Phi^{\dagger} \psi_L^j + M_{ij}^u \overline{\psi_R^{ui}} (i\tau_2 \Phi^*)^{\dagger} \psi_L^j \right] + \text{ h.c.}$$

• Scalar doublet gains vev, breaks $SU(2)_L \times U(1)_Y$ spontaneously (i.e. Vacuum breaks symmetry, action still preserving sym) through Yukawa coupling. V = 246 GeV.

$$\mathcal{L}_{EW} = \mathcal{L}_{KE} - \frac{m}{v}H\bar{\psi}\psi + \mathcal{L}_{em} + \mathcal{L}_{neutral} + \mathcal{L}_{charged} + \mathcal{L}_{Higgs}$$

After sym breaking, $SU(3)_c$ remains, EW action acquires mass terms.

SM Higgs mechanism(Breaking& Mixings)

$$\mathcal{L}_{em} = -eQ\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

$$V = \frac{\mu^{2}}{2}(v+H)^{2} + \frac{\lambda}{4}(v+H)^{4}$$

$$\mathcal{L}_{neutral} = -\frac{g}{\cos\theta_{W}}\overline{\psi_{\alpha}}\gamma^{\mu}g_{\alpha}\psi_{\alpha}Z_{\mu}$$
Higgs self-potential

$$\mathcal{L}_{charged} = -\frac{g}{\sqrt{2}} \overline{\psi_L^i} \gamma^{\mu} (T^+ W_{\mu}^+ + T^- W_{\mu}^-) \psi_L^i$$

$$\mathcal{L}_{Higgs} = \frac{1}{4}g^2W^+W^-(v+H)^2 + \frac{1}{8}\frac{g^2}{\cos^2\theta_W}ZZ(v+H)^2 - V$$

where $g_{\alpha} = T_3 - Q \sin^2 \theta_W$, $-Q \sin^2 \theta_W$ for $\alpha = L, R$, and $\tan \theta_W = g'/g$. θ_W is the

Weinberg angle, representing the mixing between B and W^3 to form the photon A =

 $B\cos\theta_W + W^3\sin\theta_W$, and the $Z = -B\sin\theta_W + W^3\cos\theta_W$. $W^{\pm} = (W^1 \mp iW^2)/\sqrt{2}$ are

the charged gauge bosons from the mixing of the original $W^{1,2}$.

Gauge boson masses

$$1/g^2 + 1/g'^2 = 1/e^2 - Coupling mixing$$

• $m_W = gv/2$, $m_Z = m_W/\cos\theta_W$ $\rho = M_W^2/M_Z^2\cos^2\theta_W$ Rho parameter = 1 in SM Higgs

If the sym breaking is NOT SM Higgs mechanism, Rho does NOT have to be 1. \rightarrow New Physics

Fermion mixing

• weak eigenstates = mixing of mass eigenstates

$$u^i = U_{iq}q \text{ for } q = u, c, t$$

 $d^i = D_{iq'}q' \text{ for } q' = d, s, b$

• Only charged current feels the mixing \rightarrow effectively CKM(Cabibbo-Kobayashi-Maskawa) matrix applies to (d,s,b). For $V=U_L^\dagger D_L$

$$\mathcal{L}_{charged} = -\frac{g}{\sqrt{2}} \left(\overline{q_L} \gamma^{\mu} W_{\mu}^+ V_{qq'} q_L' + \overline{q_L'} V_{q'q}^* \gamma^{\mu} W_{\mu}^- q_L \right)$$

• For neutrinos, called MNS(Maki-Nakagawa-Sakata) matrix.

What about Higgs mass?

• At tree level, $m_H \alpha \mu$ but this means nothing since for the scalar field, quantum corrections are *enormous*. For cutoff scale Λ ,

$$-\frac{3}{8\pi^2}\lambda_t^2\Lambda^2 \qquad \text{from the top} \qquad \frac{1}{16\pi^2}g^2\Lambda^2 \qquad \text{from the gauge boson} \qquad \frac{1}{16\pi^2}\lambda^2\Lambda^2 \qquad \text{from the Higgs} \qquad \frac{1}{16\pi^2}\lambda^2\Lambda^2 \qquad \text{from the Higgs} \qquad \frac{1}{16\pi^2}\lambda^2\Lambda^2 \qquad \frac{1}{16\pi^2}\lambda^2\Lambda^2$$

Cutoff scale 10¹⁶-18 GeV

- Quantum corrections are enormous. Higgs mass cannot be < 1 TeV unless fine tuning occurs. → Fine tuning problem in SM Higgs.
- Several BSM models to address fine tuning problem.
- Among many: Little Higgs models, low-scale SUSY models such as MSSM (Minimal SUSY SM), Technicolour models, Extra-D models
- The most boring possibility = SM Higgs with fine tuning!!

Why needing $m_{\text{H}} < 1 \text{ TeV}$?

Any 2->2 scattering amplitude can be expanded using partial waves:

$$A(s,t) = 16\pi \sum_{j=M}^{\infty} (2j+1)a_j(s)d_{mm'}^j(\cos\theta)$$

Wigner functions $d_{mm'}^{j}(\cos\theta)$

- J = 0, 1 part of σ (ZZ, $W^+W^- \rightarrow W^+W^-$, ZZ)

 proportional to 2^{nd} power of $(E_{cm}/m_w) \rightarrow Will$ violate unitarity around $E \approx m_w$.
- Higgs exchange in t-channel will cancel this contribution iff $m_H < 1$ TeV!!

NP inevitable around 1 TeV @!!

- Most boring scenario: SM Higgs with fine tuning of the mass so that $m_H < 1$ TeV. \odot
- OR Other NPs coupling to W, Z show up around 1 TeV.

<u>Lists</u>: (as well as combinations)

- Non-SM Higgs models (Little Higgs)
- Higgsless models
- Extra-D models (KK, TeV-braneworld)
- Composite models (technicolor, preon)
- SUSY models (top-down, bottom-up)

Motivations for NP models

- In addition to unitarity argument that NP must show up around 1 TeV, hierarchy problem or fine tuning problem is also a motivation.
- Large mass gap between Planck scale (or GUT scale) and EW breaking scale, 10^18 GeV and 100 GeV. Nothing in between? Really?
- A scalar such as Higgs receives quantum corrections to its mass proportional to cutoff scale square $\Lambda^2 \rightarrow if \Lambda$ huge, fine tuning is required for $m_H < 1$ TeV.

EW precision observables (any NPs need to pass.)

- ho parameter: $ho = M_W^2/M_Z^2\cos^2\theta_W$ LEP2 results found rho very close to 1.
- 1-loop Higgs contributions to *mw,z constrain* SM Higgs mass.

$$\hat{\rho} \approx 1 - \frac{11G_F M_Z^2 \sin^2 \theta_W}{24\sqrt{2}\pi^2} \ln \frac{m_h^2}{M_Z^2}$$

Global fits leading to

$$\rho_0 = 1.0008^{+0.0017}_{-0.0007},$$

$$114.4 \text{ GeV} \le M_H \le 427 \text{ GeV},$$

Parameter	Value	SM value	
$m_t[{ m GeV}]$	176.1 ± 7.4	176.9 ± 4.0	
$M_W[{ m GeV}]$	80.454 ± 0.059	80.390 ± 0.018	
$M_Z[{ m GeV}]$	91.1876 ± 0.0021	91.1874 ± 0.0021	
$\Gamma_Z[{ m GeV}]$	2.4952 ± 0.0023	2.4972 ± 0.0012	
$\Gamma({\rm had})[{\rm GeV}]$	1.7444 ± 0.0020	1.7435 ± 0.0011	
$\Gamma({ m inv})[{ m MeV}]$	499.0 ± 1.5	501.81 ± 0.13	
$\Gamma(\ell^+\ell^-)[{ m MeV}]$	83.984 ± 0.086	84.024 ± 0.025	

EW precision measurements

- Some of EW values any NPs cannot violate.
- Strongest
 constraints
 usually come
 from Z-pole
 precision
 measurements.

^{*}More updated values in PDG.

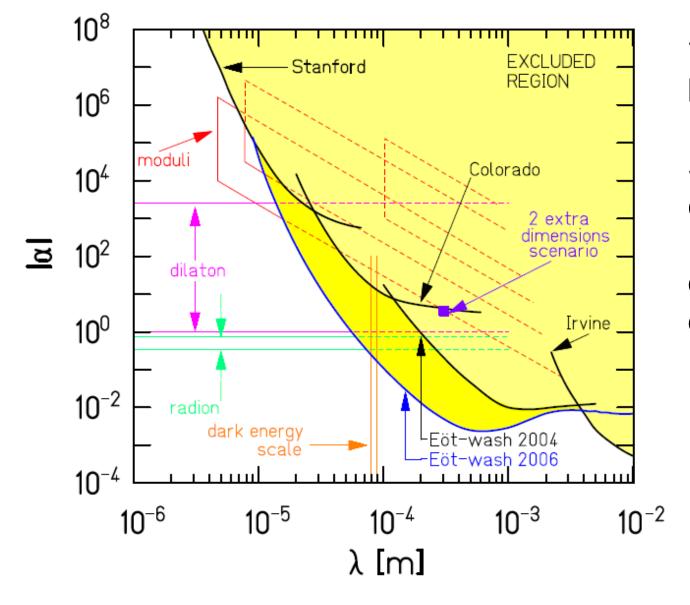
Extra-D models

- Roughly 3 categories: ADD, RS, Braneworld
- ADD(Antoniadis-Arkani Hamed-Dimopoulos-Dvali): Large compactified flat extra-D
- RS(Randall-Sundrum): infinite curved extra-D (Anti-de Sitter space)
- Braneworld (Witten-Horava-Antoniadis-Dvali): we live on the worldvolume of Dbranes, only gravity can probe extra-D!!

ADD scenario

• Extra-D compactified in a torus (flat) \rightarrow KK (Kaluza-Klein) modes with nth mode mass: $m_{KK} = nh/2\pi R$.

$$S_E = \frac{\bar{M}_D^{2+\delta}}{2} \int d^4x \ d^\delta y \ \sqrt{-\det g} \ \mathcal{R}(g)$$
$$\overline{M}_{\rm Pl}^2 = \bar{M}_D^{2+\delta} V_\delta = \bar{M}_D^{2+\delta} (2\pi R)^\delta$$
$$\overline{M}_{\rm Pl} = M_{\rm Pl}/\sqrt{8\pi} = 2.4 \times 10^{18} \ {\rm GeV}.$$


 $1/R \sim 0.4 \text{ meV} - 7 \text{ MeV} (\delta=2-6) \text{ for } M_D = 1 \text{ TeV}$ Small KK levels

- Sufficiently large $R \rightarrow$ quite small quantum gravity scale $M_D \rightarrow low$ scale quantum gravity!!
- But how BIG can it be?? Most stringent universal constraints from table-top experiments, e.g. Eotwash
- Parametrized as deviation from inverse-square law: KK-graviton in extra-D generates Yukawa potential

$$V(r) = -G_N \frac{m_1 m_2}{r} \left[1 + \alpha \exp\left(-r/\lambda\right) \right]$$

$$\alpha = 8 \delta/3 - R < 37$$
 (44) μm at 95% CL for $\delta = 2$ (1)

$$R^{-1} = M_D \left(M_D / \overline{M}_{\rm Pl} \right)^{2/\delta}$$
 Weaker bound on M_D for $\delta > 2$.

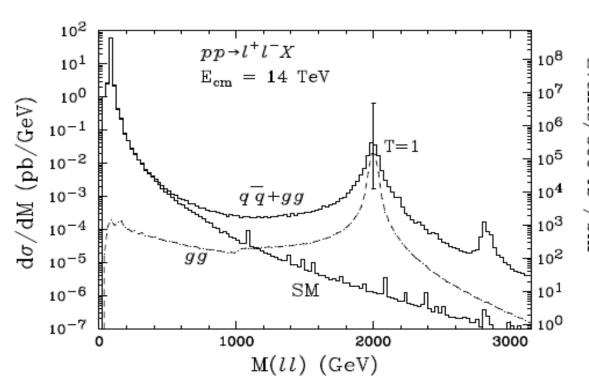
*Stronger
bound
comes from
Supernovae
cooling via
radiation
of extra-D
d.o.f. such as
KK-gravitons

- Bounds from KK-gauge, radion, dilaton: $M_D > 3.6$ TeV for $\delta = 2$.
- Bounds from KK-gravitons from supernovae cooling: $M_D > 14$ (1.6) TeV for $\delta = 2$ (3).
- Stronger bounds from luminosities of pulsar hit by KK-gravitons: $M_D > 750$ (35) TeV for $\delta = 2$ (3).

ADD open questions:

- Radius stabilization, what mechanism fixing the radius of extra-D? Why this value?
- Still don't know how to quantize gravity, worse when quantum graviy scale is this small!!

Collider signals


$$\mathcal{L}_{\mathrm{int}} = \pm \frac{4\pi}{\Lambda_T^4} \ T, \qquad \mathcal{T} = \frac{1}{2} \left(T_{\mu\nu} T^{\mu\nu} - \frac{1}{\delta + 2} T^{\mu}_{\mu} T^{\nu}_{\nu} \right) \quad \text{Dim.8}$$
 operator
$$\mathcal{L}_{\mathrm{int}} = \pm \frac{4\pi}{\Lambda_\Upsilon^2} \ \Upsilon, \qquad \Upsilon = \frac{1}{2} \left(\sum_{f=g\ell} \bar{f} \gamma_{\mu} \gamma_5 f \right)^2 \quad \text{Dim.6}$$
 operator

- Effective interactions induced by graviton exchanges, tree-level(dim.8) and loop(dim.6).
- Current lower bound on scales ≈ 1-10 TeV. Still visible at LHC if exists!
- Best channels: lepton pair, diphoton production

TeV-string signals

- If quantum gravity scale is as low as TeVs and if the correct QG theory is string-like, LHC signals are enormous!!
- SR (string resonances)

or stringy
excitations could
enhance SM
scatterings
(P. Burikham et. al.).

RS scenario

• Curved or warped extra-D, 5-D space, the 5th compactified on half-circle. S^1/Z_2

$$ds^{2} = \exp(-2k|y|) \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2}$$

- 2 branes at opposite ends or *fixed pts,* with negative and positive tension. Negative-tension brane = IR brane $(y=\pi R)$ where SM particles localized, positive-tension brane = UV brane (y=0).
- Bulk cosmological constant fine-tuned to exactly cancel apparent 3-D cosmological constant.

$$ds^{2} = \exp(-2k|y|) \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2}$$

- Spacetime not factorized, metric on 4-D exponentiated by 5th coordinate.
- Gravitation redshift by factor 1/g_∞ ^1/2, energies from UV-brane viewed by IR-world redshifted by this factor.

$$m_{IR} = m_{UV} \exp(-\pi kR)$$

Large hierarchy generated!

- For $kR \approx 12$, M_{UV} = Planck mass (10^18 GeV), M_{IR} = EW mass (100 GeV) can be generated.
- Radius stabilization via Goldberger-Wise mechanism (`99).
- N<u>th</u> mode KK has mass: $m_n = \frac{x_n}{x_1} m_1$
- x_n is nth zero of Bessel function. m_1 is mass parameter.
- Interaction: $\mathcal{L} = -\frac{T^{\mu\nu}}{\overline{M}_{\rm Pl}}h^{(0)}_{\mu\nu} \frac{T^{\mu\nu}}{\Lambda_{\pi}}\sum_{n=1}^{\infty}h^{(n)}_{\mu\nu}$

Collider Signals

$$\mathcal{L}_{\rm int} = \pm \frac{4\pi}{\Lambda_\pi^4} \ \mathcal{T}, \qquad \mathcal{T} = \frac{1}{2} \left(T_{\mu\nu} T^{\mu\nu} - \frac{1}{\delta+2} T^\mu_\mu T^\nu_\nu \right) \qquad \text{Dim.8}$$
 operator

- Similar to ADD int. except there is NO dim.6 operator. \rightarrow cannot tell which model for certain if found. $\Lambda_{\pi} = \overline{M}_{\text{Pl}} \exp(-\pi kR)$
- Again, best channels are dilepton, diphoton.
- Current bounds from D0 and CDF: $\Lambda_{\pi} > 4.3(2.6)$ TeV for $m_1 = 500(700)$ GeV.
- LHC can probe upto 10 TeV for m_n , Λ_{π} .

Radion

 Size of extra-D determined by radion, radion stabilization is crucial. For a radion r:

$$\mathcal{L} = -rT/\Lambda_{\varphi}$$
 $\Lambda_{\varphi} = \sqrt{24}\Lambda_{\pi}$

- Trace anomaly from SM makes gg $\rightarrow r$ large, main channel to be searched at LHC.
- Radion can mix with Higgs through scalarcurvature int. For 4-D induced metric:

$$S_{mix} = -\xi \int d^4x \sqrt{-\det g_{\rm ind}} R(g_{\rm ind}) H^+ H$$
 mixing parameter

- Higgs-radion mixing → search for radion is the same as Higgs.
- Radion stabilization requires radion mass less than KK-gravitons.

RS open questions:

- Why 5-D? Gauge and gravity in 5-D are nonrenormalizable.
- GUT? How to quantize gravity? String theory at higher scales?
- Other questions remain, cosmological constant, baryogenesis, DM is proposed to be lightest KK-mode.

SM in flat extra-D

- Massive KKs in RGE (Renorm Group Eqn.) ->
 GUT in extra-D at low scales, as low as TeVs!!
- In contrast to ADD, extra-D must be smaller, around TeV^{-1} since we do NOT observe KK SM particles below 1 TeV!
- Typical model: extra-D S/Z₂
- Varieties: Gauge bosons in the bulk, fermions&Higgs in the bulk, ALL in bulk (UED).

Gauge bosons in extra-D

• KK masses of gauge bosons: $M_n^2 = M_0^2 + \frac{n^2}{R^2}$

• KK bosons coupling: $(g_n = \sqrt{2}g)$

Shift of observables by factor $V=2\sum_n\left(\frac{g_n^2}{g^2}\right)\frac{M_Z^2R^2}{n^2}\sim \frac{2}{3}\pi^2M_Z^2R^2$

- Constraints from Precision EW data from Tevatron, HERA, LEP2 \rightarrow 1/R > 6.8 TeV.
- LHC at 100 fb^{-1} can probe to 1/R ~ 16
 TeV.

- Fermions at different location in extra-D
 overlap with Higgs wave function differently
 → observed mass hierarchy.
- Universal Extra-D(UED) → All SM particles live in bulk with KK parity (discrete sym Z₂ of KK number).
- Conservation of momentum in extra-D → KKparity conservation → KK particles as DM candidate
- LHC can probe up to 1/R ~ 1.5 TeV.

GUT in extra-D

 Scherk-Schwarz mechanism to breaks symmetries such as GUT and SUSY.

$$+: \cos \frac{n y}{R}$$

 $-: \sin \frac{n y}{R}$

- Under S/Z_2 ($y \rightarrow -y$): only even states have 0th mode. Odd states missing at the fixed pts $y=0,\pi R$ where our low E world lives.
- Could have N=2 SUSY in bulk and N=1 for O^{th} modes at fixed pt if imposing A, λ even and Φ , ψ odd.
- Choosing diff boundary conditions for diff fields \rightarrow orbifolding $\rightarrow Z_2$ orbifold.

GUT in extra-D

- Orbifolding: can project out certain unwanted states by choosing odd b.c. so their 0th modes won't show up at the fixed pt world.
- Can fudge while proton wont decay according to GUT.
- → Can make unification better at lower scale and yet proton decay is not too fast.

SM in warped extra-D

- In RS scenario, only Higgs need to live on the IR-brane to solve the fine tuning problem of the Higgs mass. ← corrections are redshifted.
- But if SM also lives in warped bulk, interesting things happen.
- In 5-D AdS space (AdS/CFT):
 - 1. motion along 5^{th} D = RG flow of 4D theory
 - 2. local sym in 5D = global sym in 4D
- RS model ← → walking technicolor model!!

SM in warped

- Can explain mass hierarchy if locate fermions on diff position along 5th coordinate. Higgs on IR-brane overlap differently with each fermion → diff. masses.
- EW precision observables especially ρ parameter excluded basic model \rightarrow need to enlarge gauge group of EW in bulk to $SU(2)_L$ $SU(2)_R$ U(1) to impose custodial symmetry preserving value of ρ .

Higgsless models

- No Higgs!! Breaks EW using orbifolding.
 Lightest KK gauge bosons identified with W, Z with masses ~ 1/R.
- Scatterings of SM without Higgs need someth to unitarize the amplitude at $E \sim 4\pi m_W/g \sim 1$ TeV \rightarrow heavy KK gauge bosons do the job postponing this to 10 TeV!
- Above 10 TeV, strong dynamics take over, bound states expected to form.
- Require warped extra-D, custodial sym, still cannot predict top-quark mass.

SUSY models

- In a sense, this is extra-D models with Grassmann extra dimensions!
- Poincare sym. \rightarrow max'al extension to contain SUSY generators, $Q \sim \sqrt{P}$. \leftarrow theoretical beauty
- Motivations (apart from beauty): fermionic loop contributes the same as bosonic loop but with opposite sign → natural loop cancellations!
- Loop cancellation is promising for many purposes.

Unwanted Loops

- Quantum gravity suffers *loop* complications.
 Each order of loops is worse than the previous.

 unrenormalizable.
- Loops induce anomalies (= breaking of classical sym by quantum effects).
- Pheno level: loop corrections to scalar mass proportional to Λ^2 \rightarrow fine tuning problem.
- SUSY ensures loop cancellation at 1-loop order. ← not only beautiful but also useful!

SUSY algebra

$$Q|\mathrm{Boson}\rangle=|\mathrm{Fermion}\rangle, \qquad Q|\mathrm{Fermion}\rangle=|\mathrm{Boson}\rangle$$

$$\{Q,Q^{\dagger}\}=P^{\mu}, \\ \{Q,Q\}=\{Q^{\dagger},Q^{\dagger}\}=0, \\ [P^{\mu},Q]=[P^{\mu},Q^{\dagger}]=0,$$

- Q transforms boson to fermion and vice versa.
- P is a vector with spin $1 \rightarrow Q$ acts as spin $\frac{1}{2}$.
- 1-particle states = irreducible rep. of SUSY algebra called supermultiplets

- Spin-statistic thm → #bosonic d.o.f. =
 #fermionic d.o.f. for each supermultiplet →
 Every particle must have its superpartner in
 SUSY theory.
- chiral multiplet = 2-component Weyl fermion
 + 2 real scalars (or 1 complex scalar)
- vector multiplet = 2-helicity gauge boson
 + 2-component Weyl fermion
- partners of Weyl in chiral mulp = sfermions, partners of gauge bosons in vector mulp = gauginos. Same representations in each mulp.

- If including gravity such as sugra: massless graviton (2) + massless gravitino (2), graviton has spin 2, gravitino has spin 3/2.
- For N = # of SUSY generator Q's. Extended
 SUSY with N>1 in 4D not allow chiral fermions
 → unrealistic. But extra-D models N>1 are
 realistic if chiral fermions can be obtained, e.g.
 at fixed pts.
- Anomaly free Higgs mulp = at least 2 chiral mulp for Higgs, one for up-type and one for down-type fermion.

MSSM (minimal supersymmetric SM)

Names		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{3},1,-\frac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{\bf 3},{\bf 1},{\textstyle {1\over 3}})$
sleptons, leptons	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	$(\nu \ e_L)$	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$	$(1, 2, +\frac{1}{2})$
	H_d	$(H_d^0\ H_d^-)$	$(\widetilde{H}_d^0 \ \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2})$

- Chiral supermulp in MSSM, superpartners must have the same gauge charges, reps.
- 2 Higgs multiplets.

MSSM

Names	spin 1/2	spin 1	$SU(3)_C$, $SU(2)_L$, $U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	W^{\pm} W^0	(1, 3, 0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

- Gauge mulps in MSSM. Gluino, wino, bino
- After EW breaking: photino, wino, zino

MSSM

To break SUSY

$$\mathcal{L} = \mathcal{L}_{SUSY} + \mathcal{L}_{soft}$$

$$\mathcal{L}_{soft}^{MSSM} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right)$$

$$- \left(\tilde{u} \mathbf{a_u} \widetilde{Q} H_u - \tilde{d} \mathbf{a_d} \widetilde{Q} H_d - \tilde{e} \mathbf{a_e} \widetilde{L} H_d + \text{c.c.} \right)$$

$$- \tilde{Q}^{\dagger} \mathbf{m_Q^2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m_L^2} \widetilde{L} - \tilde{u} \mathbf{m_u^2} \widetilde{u}^{\dagger} - \tilde{d} \mathbf{m_d^2} \widetilde{d}^{\dagger} - \tilde{e} \mathbf{m_e^2} \widetilde{e}^{\dagger}$$

$$- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

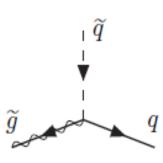
 Soft terms: mass terms, positive mass dimension coupling terms which violate SUSY.

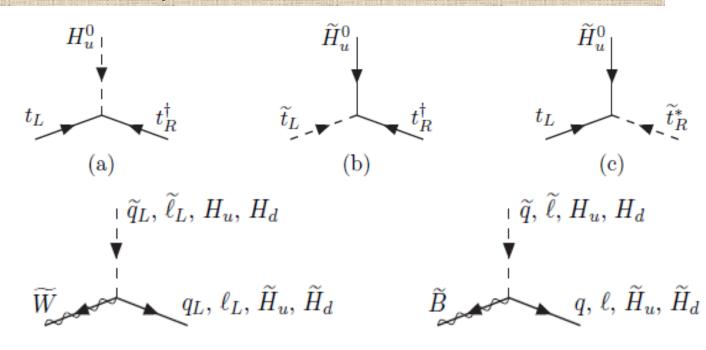
Breaking MSSM

• Even when SUSY is broken, masses of partners are different. If $m_{soft} = largest \ scale \ in \ soft$ terms, then the correction to Higgs mass is

$$\Delta m_H^2 = m_{\rm soft}^2 \left[\frac{\lambda}{16\pi^2} \ln(\Lambda_{\rm UV}/m_{\rm soft}) + \dots \right]$$

- Only Log divergence with respect to cutoff Λ, much better than quadratic divergence in non-SUSY models.
- However, partners masses cannot be too huge to solve fine tuning problem.


- For $\Lambda = M_{Pl}$, m_{soft} should be less than 1 TeV to solve the fine tuning problem.
- Thus if correct, LHC should discover the superpartners.
- Any reasons why only superpartners are not light enough to have already been observed?
- scalars such as sfermions, Higgs can have gauge-inv. mass terms $m^2|\phi|^2$ of order of m_{soft}
- Higgsinos, gauginos are in real representation
 → can also have gauge-inv. mass terms of order of m_{soft} as well.


Interactions in MSSM

- Apply SUSY transformation to SM vertices

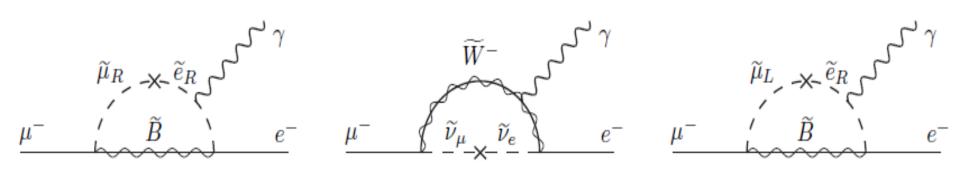
 MSSM vertices! (Higgs sector considered separately)
- Caution: SUSY particles must appear in pairs (R-parity conservation).

e.g. top Yukawa, gauge couplings

Interactions in MSSM

 Some ints. Not determined by gauge int. of SM → Higgs sector. All dimensionful couplings depend on μ:

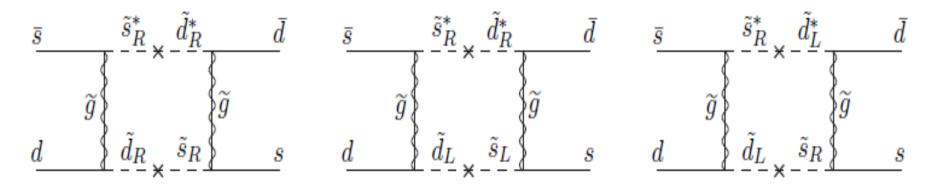
$$-\,\mathcal{L}_{\mbox{higgsino mass}} = \mu(\widetilde{H}_u^+ \widetilde{H}_d^- - \widetilde{H}_u^0 \widetilde{H}_d^0) + \mathrm{c.c.}$$


$$-\,\mathcal{L}_{\text{supersymmetric Higgs mass}}\,=\,|\mu|^2(|H_u^0|^2+|H_u^+|^2+|H_d^0|^2+|H_d^-|^2)$$

$$\mathcal{L}_{\text{supersymmetric (scalar)}^3} \ = \ \mu^* (\widetilde{\overline{u}} \mathbf{y_u} \widetilde{u} H_d^{0*} + \widetilde{\overline{d}} \mathbf{y_d} \widetilde{d} H_u^{0*} + \widetilde{\overline{e}} \mathbf{y_e} \widetilde{e} H_u^{0*}$$

• μ should be about 100 GeV to get right EW scale, but why not the M_{Pl} or M_{GUT} ?? $\rightarrow \mu$ problem.

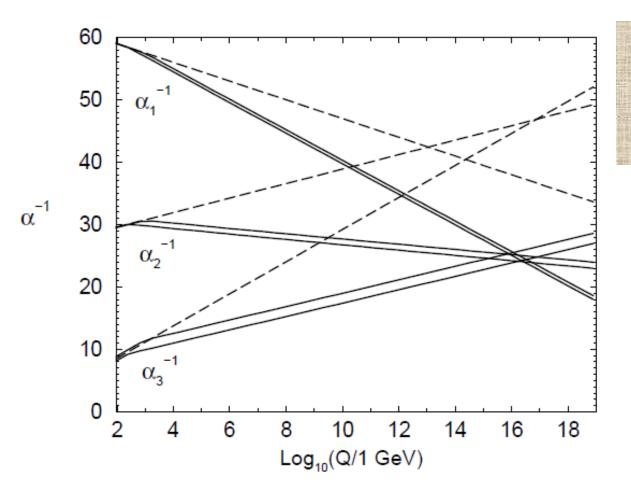
Constraints on MSSM(105 new parameters)


 FCNC (FlavorChangingNeutralCurrent): righthanded slepton can mix, inducing FC processes:

- This process occurs in SM by mixing of $\mu\&e$ -neutrinos (SUSY transforms the 2^{nd} diagram).
- $\text{Br}(\mu \to e\gamma)_{\text{exp}} < 1.2 \times 10^{-11}$ \rightarrow suppressed slepton mixing.

Constraints on MSSM

• Also strong constraints on squark mixing from Kaon mixing: $K^0 \leftrightarrow \overline{K}^0$


 Therefore, MSSM usually assumes NO mixing of squarks, sleptons. ← flavor-universal SUSY breaking!

Constraints from SM

Soft-SUSY breaking universality:
 In family space at SUSY breaking scale,

$$\mathbf{m_Q^2} = m_Q^2 1$$
, $\mathbf{m_U^2} = m_u^2 1$, $\mathbf{m_d^2} = m_d^2 1$, $\mathbf{m_L^2} = m_L^2 1$, $\mathbf{m_E^2} = m_e^2 1$
 $\mathbf{a_u} = A_{u0} \, \mathbf{y_u}$, $\mathbf{a_d} = A_{d0} \, \mathbf{y_d}$, $\mathbf{a_e} = A_{e0} \, \mathbf{y_e}$,
 $\mathbf{arg}(M_1), \, \mathbf{arg}(M_2), \, \mathbf{arg}(M_3), \, \mathbf{arg}(A_{u0}), \, \mathbf{arg}(A_{d0}), \, \mathbf{arg}(A_{e0}) = 0 \, \text{or} \, \pi$
So that only CKM phases break CP.

• This flavor-blind *ad hoc* conditions require theoretical explanations in the top-down approach.

gaugecouplings unified better in MSSM

$$\frac{d}{dt}\alpha_a^{-1} = -\frac{b_a}{2\pi}$$

$$t = \ln(Q/Q_0)$$

$$(b_1, b_2, b_3) = \begin{cases} (41/10, -19/6, -7) & \text{Standard Model} \\ (33/5, 1, -3) & \text{MSSM} \end{cases}$$

LSP as DM candidate

MSSM has discrete sym called R-sym:

$$R = (-1)^{3(B-L)+2S}$$

- positive for SM particles, negative for superpartners.
- superpartners always created in pairs, LSP cannot into pure SMs.
- LSP with mass few hundred GeVs can serve as cold DM candidate!!

Supersymmetry breaking origin (Hidden sector) Flavor-blind

\times\tim

MSSM (Visible sector)

- Hidden sector breaks SUSY, then gravity mediates the breaking to MSSM sector, resulting in flavor-blind or flavor universal breaking.
- Can explain conditions mentioned earlier.

 In generation space at the SUSY breaking scale:

$$M_3 = M_2 = M_1 = m_{1/2},$$

$$\mathbf{m_{Q}^{2}} = \mathbf{m_{\overline{u}}^{2}} = \mathbf{m_{\overline{d}}^{2}} = \mathbf{m_{L}^{2}} = \mathbf{m_{\overline{e}}^{2}} = m_{0}^{2} 1, \qquad m_{H_{u}}^{2} = m_{H_{d}}^{2} = m_{0}^{2},$$
 $\mathbf{a_{u}} = A_{0}\mathbf{y_{u}}, \qquad \mathbf{a_{d}} = A_{0}\mathbf{y_{d}}, \qquad \mathbf{a_{e}} = A_{0}\mathbf{y_{e}},$
 $b = B_{0}\mu,$

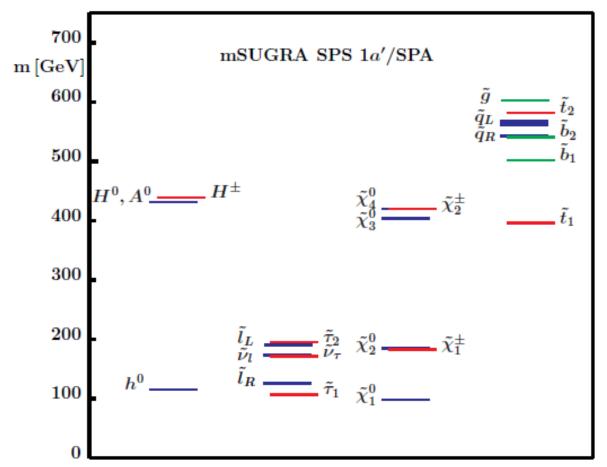
Remaining parameters :

$$m_{1/2}, m_0^2, A_0, B_0, \text{ and } \mu$$

• Remaining parameters after EW breaking : for $v_u, v_d = \text{vev of } H_u, H_d$,

$$m_0, A_0, m_{1/2}, \tan \beta, \text{ and } \text{sgn}(\mu)$$

$$\begin{split} \tan\beta &= v_u/v_d \qquad v_d^2 + v_u^2 = 4m_W^2/g^2 \simeq (246 \,\, \mathrm{GeV})^2 \\ \sin(2\beta) &= \frac{2b}{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}, \qquad \text{Masses at EW scale} \\ m_Z^2 &= \frac{|m_{H_d}^2 - m_{H_u}^2|}{\sqrt{1-\sin^2(2\beta)}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2 \end{split}$$


 All mass spectrum determined by SM parameters plus these additional 5.

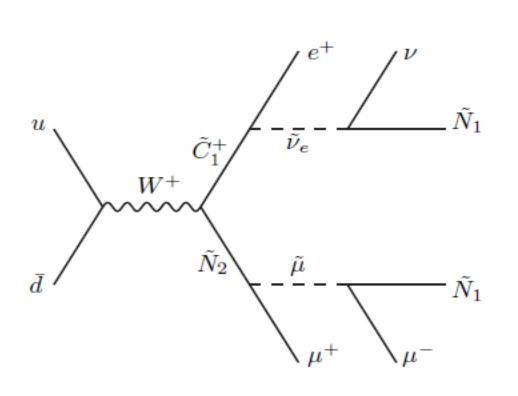
$$y_b/y_t = (m_b/m_t) \tan \beta$$

- For natural Yukawa coupling, y_b ~ y_t → large tanβ is preferred. ← But upper bound from EW breaking conditions exists.
- Reference points or benchmark points:
 SPA=SUSY Parameter Analysis, points in parameter space with realistic values consistent with LSP as CDM and EW precision.

$$M_{1/2} = 250 \text{ GeV} \quad \text{sign}(\mu) = +1$$

 $M_0 = 70 \text{ GeV} \quad \tan \beta(\tilde{M}) = 10$
 $A_0 = -300 \text{ GeV}$

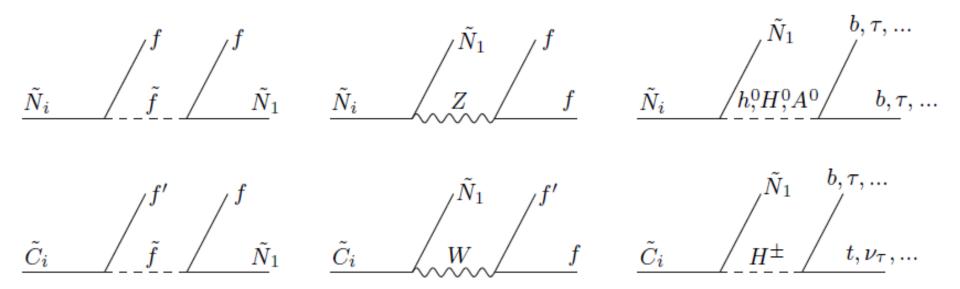
mSUGRA mass spectrum at SPS 1a'/SPA reference point (SUSY scale 1 TeV)


http://arxiv.org/PS cache/hep-ph/pdf/0511/0511344v2.pdf for details.

- Squarks
 heavier than
 sleptons and
 gauginos
- LSP=lightest neutralino
- Higgs light
 enough to be
 found at
 IHC.

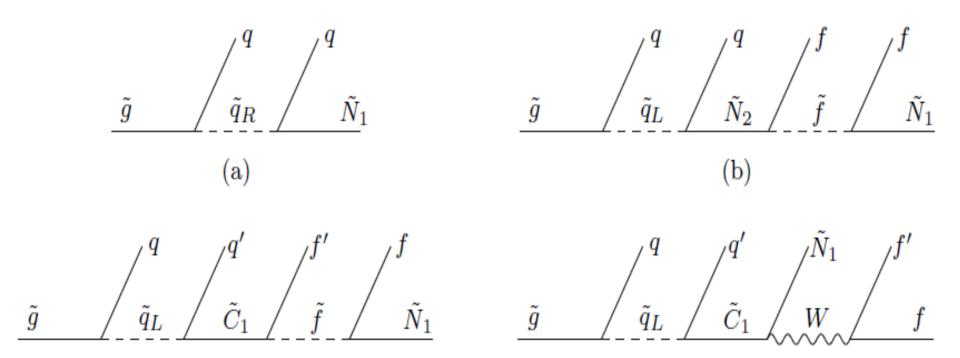
Experimental signatures

- Constraints from $\mu \rightarrow e\gamma$, $b \rightarrow s\gamma$, neutral meson mixing, electric dipole moment for e, n, anomalous magnetic moment of muon.
- Collider signatures:
- Superpartners produced in pairs then decay to SM particles and invisible LSPs (Lightest superpartners). e.g. at hadron colliders


Collider signatures

- Example of charginos, neutralino production. They will finally decay into LSP, assumed to be the lightest neutralinno here.
- Looking for $\mu^+\mu^-e^+ + E_T$ with no jets. (*trilepton* signals)

Collider signatures


Many decay channels: chargino, neutralino

slepton decays:

$$\widetilde{\ell} \to \ell \widetilde{N}_i, \quad \ \widetilde{\ell} \to \nu \widetilde{C}_i, \quad \ \widetilde{\nu} \to \nu \widetilde{N}_i, \quad \ \widetilde{\nu} \to \ell \widetilde{C}_i$$

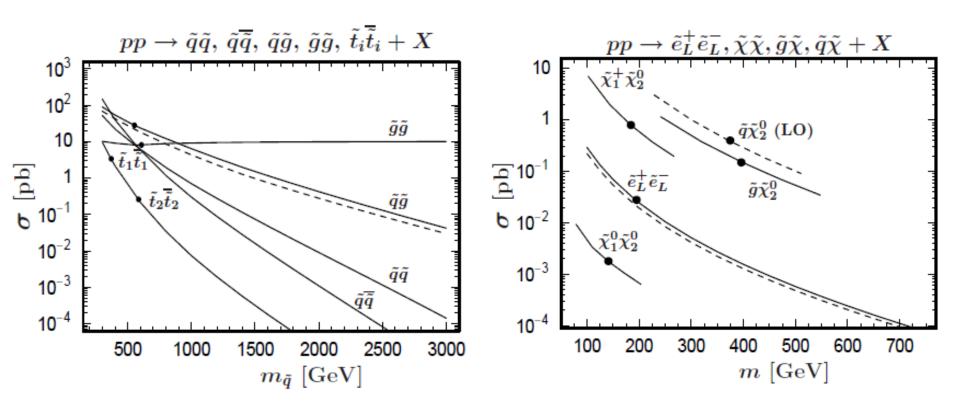
Gluino decays:

Lightest Higgs possible to be discovered at LHC:

Very large $gg \to h^0$ $h^0 \to \gamma \gamma \\ h^0 \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^- \\ h^0 \to WW^{(*)} \to \ell^+ \nu \ell'^- \bar{\nu}.$

MSSM Higgs at LHC

 Other channels: weak bosons fusion, W, Z radiated from quarks (forward jets):


$$W^+W^- \to h^0$$
 and $ZZ \to h^0$

$$pp \to h^0 jj \to \tau^+ \tau^- jj \text{ or } WW^{(*)} jj$$

Also because of large Yukawa coupling:
 Higss radiated from a top

$$pp \to t\bar{t}h^0 \to t\bar{t}b\bar{b}$$
.

Some hypothetical plots at LHC

http://arxiv.org/PS cache/hep-ph/pdf/0511/0511344v2.pdf for details.

NP lists

More and more and much more.

- Little Higgs, Fat Higgs, SUSY in extra-D
- Strong dynamics: technicolor models, preons
- Flavor gauge theories, horizonal symmetries
- NMSSM, mmSUGRA (gravitino variations),
 GMSB, AMSB → more parameters!
- String models, low-scale string pheno (e.g. P. Burikham et. al. ³) TeV-scale BH, string balls etc.
- LHC Pb-Pb collision → Quark-Gluon Plasma*

References

- PDG (Particle Data Group) and references therein, http://pdg.lbl.gov/
- SPIRES, http://www.slac.stanford.edu/spires/
 to search for articles and references.