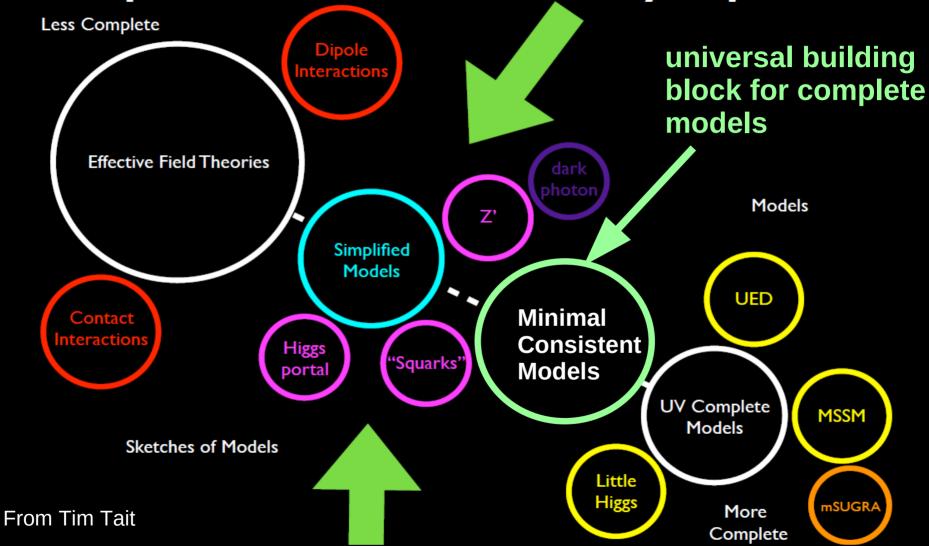
Probing Dark Matter with Disappearing Tracks at the LHC and future colliders

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory


LLP8 workshop:

Searching for long-lived particles at the LHC and beyond

November 19, 2020

Spectrum of Theory Space

Dark Matter and Long Lived Particles

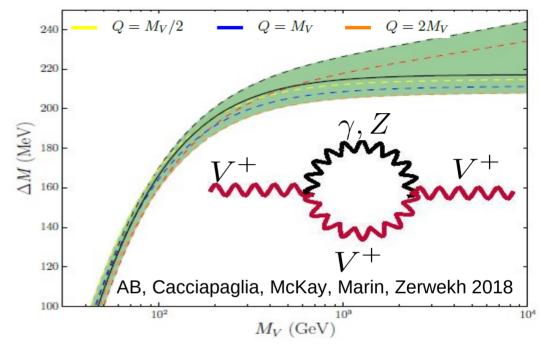
- split of charged and neutral components is $\sim m_\pi$
- The hypercharge of the multiplet
 - a) should be zero, otherwise the the model is excluded by DM DD constraints from Zboson exchange
 - b) or neutral component (DM) of the multiplet should be split by additional (e.g. Yukawa) interactions, which eliminate DM-DM-7
 - c) multiplet for non-zero hypercharge can not be large – negatively charged component becomes the lightest particle

■ LLPs appear in the minimal DM models with DM being the part of the EW multiplet: **the radiative mass split** of charged and neutral components is
$$\sim m_\pi$$
 The **hypercharge of the multiplet**

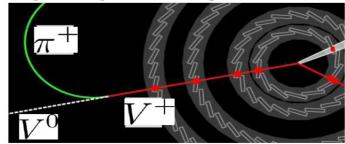
■ a) should be zero, otherwise the the model is excluded by DM DD constraints from Z-

$$M_Q - M_{Q'}|_{m_D \gg m_W} \approx \frac{\alpha m_W}{2(1 + c_W)} \left[(Q^2 - {Q'}^2) + \frac{2Y(Q - {Q'})}{c_W} \right]$$

Cirelli, Fornengo, Strumia 2005 (scalar and femion DM)


$$\Delta M = \frac{5g_W^2 (M_W - c_W^2 M_Z)}{32\pi}$$

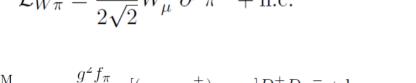
AB, Cacciapaglia, McKay, Marin, Zerwekh 2018 (vector DM)



Dark Matter and Long Lived Particles

- LLPs appear in the minimal DM
- models with DM being the part of the EW multiplet: the radiative mass split of charged and neutral components is $\sim m_\pi$
- The hypercharge of the multiplet
 - a) should be zero, otherwise the the model is excluded by DM DD constraints from Zboson exchange
 - b) or neutral component (DM) of the multiplet should be split by additional (e.g.Yukawa) interactions, which eliminate DM-DM-Z
 - c) multiplet for non-zero hypercharge can not be large – negatively charged component becomes the lightest particle

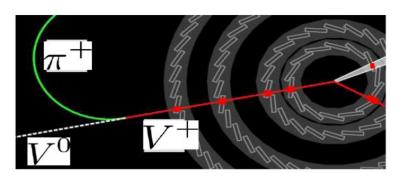
This small mass gap (~ pion mass) provides disappearing charge track signature

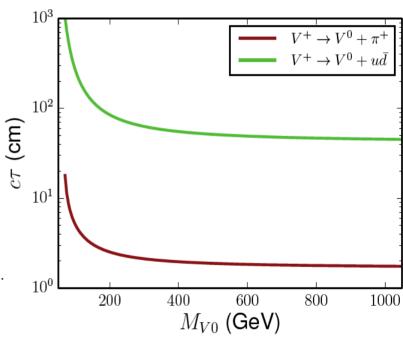


D⁺ (charged partner of DM multiplet) decay

- The phase-space suppression makes DM to take away most of the energy in the process making SM particles invisible for the detector producing a Disappearing Track
- D⁺ life-time should be properly evaluated using W-pion mixing (otherwise overestimated by factor of 10)

$$\mathcal{L}_{W\pi} = \frac{gf_{\pi}}{2\sqrt{2}}W_{\mu}^{+}\partial^{\mu}\pi^{-} + \text{h.c.}$$

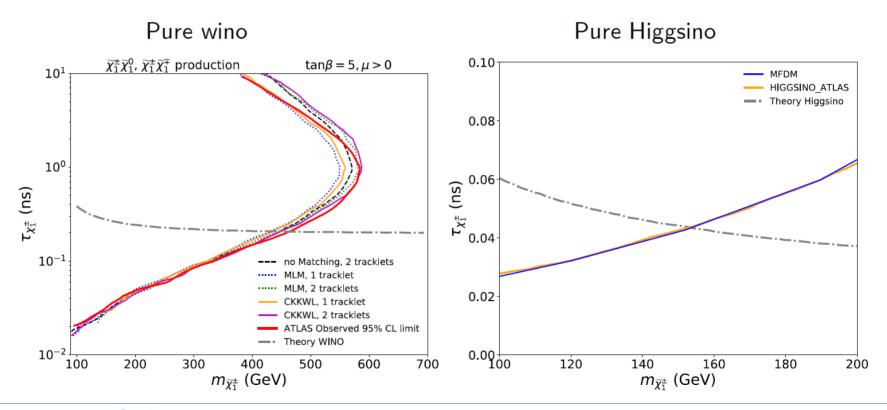



$$\mathcal{L}_{D^+D\pi^-}^{\text{i2HDM}} = -\frac{g^2 f_{\pi}}{4\sqrt{2}M_W^2} [(p_D - p_D^+) \cdot p_{\pi^-}] D^+ D\pi^- + \text{h.c.}$$

$$\mathcal{L}_{D^{+}D\pi^{-}}^{\text{MFDM}} = -\frac{g^{2}f_{\pi}}{4\sqrt{2}M_{\pi^{-}}^{2}}\cos(\theta_{DD_{3}})p_{\pi^{-}}^{\mu}D^{+}\gamma^{\mu}D\pi^{-} + \text{h.c.}$$

$$\mathcal{L}_{D^+D\pi^-}^{\text{VDM}} = -\frac{g^2 f_{\pi}}{2\sqrt{2}M_{PL}^2} \left[(p_D - p_{D^+})^{\mu} g^{\nu\rho} - p_D^{\nu} g^{\mu\rho} + p_{D^+}^{\rho} g^{\mu\nu} \right] p_{\pi^-\mu} D_{\nu}^+ D_{\rho} \pi^- + \text{h.c.}$$

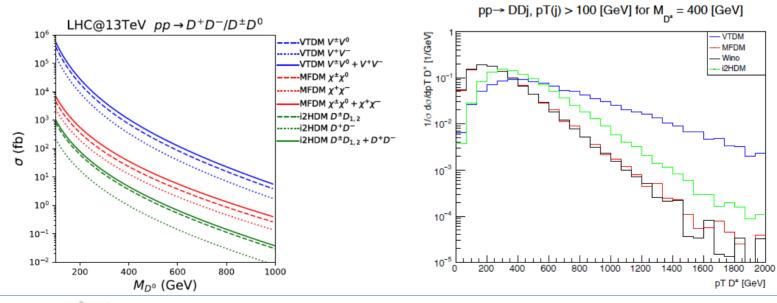
$$\mathcal{L}_{D^{+}D\pi^{-}}^{\text{MSSM}} = -\frac{g^{2}f_{\pi}}{4\sqrt{2}M_{W}^{2}}p_{\pi^{-}\mu}D^{+}\left[g_{L}\gamma^{\mu}P_{L} + g_{R}\gamma^{\mu}P_{R}\right]D\pi^{-} + \text{h.c.}$$



Validation of our analysis

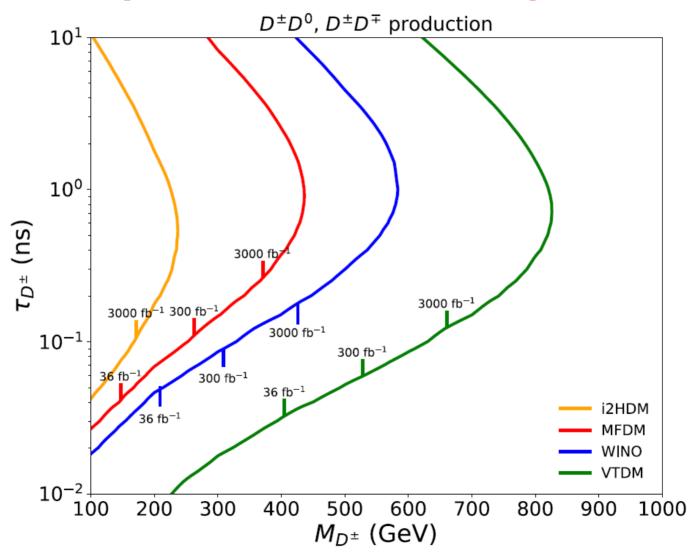
A. Belyaev, S. Prestel, F. Rojas-Abatte, J. Zurita [arXiv 2008.08581]

We first validate our approach by comparing our results for the MSSM wino and MSSM Higgsino scenarios used by ATLAS [arXiv:1712.02118] as benchmark models.


Reinterpretation of the LHC analysis

We apply our validated procedure to minimal models where DM is either:

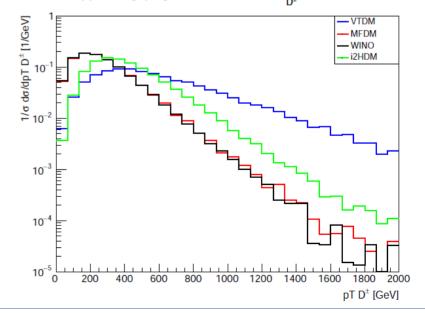
- Scalar: Inert two-Higgs doublet model (i2HDM)
- Fermion: Minimal Fermion Dark Matter model (MFDM)
- Vector: Minimal Vector Triplet Dark Matter model (VTDM)


Considering the double production cross section and the Transverse momentum distribution of D^{\pm} we can expect that the constraint hierarchy goes like:

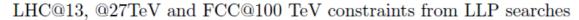
 $VTDM \rightarrow MFDM \rightarrow i2HDM$

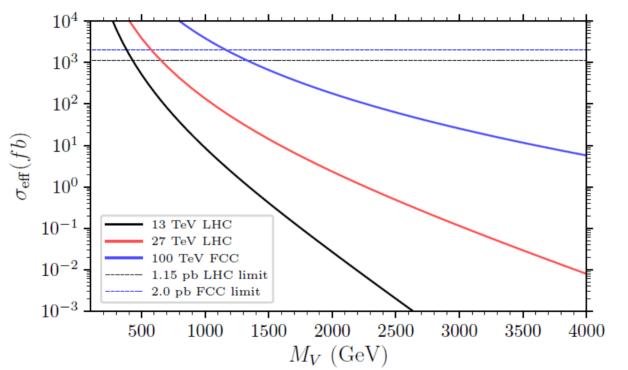
Alexander Belyaev

The power of DT for DM probe


Alexander Belyaev

The power of Disappearing Tracks to probe DM models




S.Prestel, F.Rojas-Abate, J.Zurita, AB, arXiv:2008.08581

- Delphes simulation & reinterpretation of ATLAS DT 36 fb ⁻¹ results
- Present DT sensitivity goes even beyond HL LHC monojet sensitivity
- The sensitivity also depends on PT of D+
- The reinterpretation code is public at https://github.com/llprecasting/recastingCodes/ $pp \rightarrow DDj$, pT(j) > 100 [GeV] for $M_{D+} = 400$ [GeV]

Future Collider sensitivity to VDM mass

AB, Cacciapaglia, McKay, Martin, Zerwekh arXiv:1808.10464

Current bound from LHC on DM mass from the minimal vector triplet model is around **500 GeV**

100 TeV FCC will cover DM mass up to 1.2 TeV

Thank you!