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Far- forward searches at the LHC
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Run 3 — FASER / FASERV experiments (approved), SND@LHC (proposed) FASER Collaboration, 1908.02310
talks: Susanne Kuehn, Antonia Di Crescenzo

HL-LHC — (possible upgrade) FASER 2 / FASERv2

Proposal for HL-LHC: Forward Physics Facility (FPF)
=) talk Felix Kling

Distant (~0.5km) detectors with a small angular coverage — focus on light particles collimated around the beam collision axis

Multi-purpose experimental facility
(various signatures of new physics, SM measurements)

In the TI12/T118 tunnels:

Standard Model backgrounds highly
suppressed besides neutrino-

and muon-induced ones;

low radiation levels




Experimental signatures

 Displaced LLP decays into two high-energy oppositely charged tracks (main FASER)
THIS TALK

* Neutrino-nuclei scattering events (FASERv, SND@LHC)

e LLP decays to high-energy photons (FASER [preshower detector])

 HL-LHC: scattering of electrons to search DM & study neutrinos
(SND@LHC, potential future neutrino detectors based on LAr or emulsion technology)
=) see also A. Ariga, T. Ariga, O. Sato etal Snowmass input
& B. Batell talk at the recent FPF kickoff meeting

» Search for milli-charged particles, forward MilliQan-type detector FORMOSA
“ talk Yu-Dai Tsali

e Muon physics BSM and SM studies
= ST talk at the recent FPF kickoff meeting, with F. Kling & others



Search for LLP - vyyin FASER

» High-energy photons (>100GeV) at the FASER location are mostly muon-induced

» They can be rejected based on the detection of time-coincident muon

» Additional handles over neutrino-induced BG come from using the preshower detector

» Two time-concident & high-energy photons are even more difficult to be mimicked by the SM

* Example sensitivity reach for ALPs with the di-photon or SU(2)  couplings

J.L. Feng, I. Galon, F. Kling, ST, 1806.02348
F. Kling, ST, 2006.10630, i ; n2a? — gasz Wﬁywa
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Search for LLP - vy
in FASER and emulsion

 Single high-energy photon signature in the decay vessel (>100 GeV):
- requires very good rejection of muon-induced BG
- could suffer from residue BG from neutrino interactions in the preshower

* In the emulsion detector (FASERV2):

- focus on very high-energy photons (>1TeV or even >3TeV) to suppress muon-induced BG
- if the EM shower leaks to the electronic detector, time info helps to reject BG

K. Jodtowski, ST, 2011.04751

* Dipole portal to HNLs

LD pun Loy NrF* +h.c.,

G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, 1803.03262;

ity [1/GeV]

*vZ - N Z coherent upscat. to HNL off nuclei
(suppressed momentum exchange, no other activity at vertex)

» subsequent N - vy decay (3-body decays to e+e- have BR<1%)

 up to ~1073 high-energy photons with >3TeV in HL-LHC



Dark matter search (& neutrino studies)

with B. Batell, J.L. Feng Forward Physics Facility
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« Search for dark matter scattering off electrons in the electron credit: Brian Batell

« Signature: single-electron-induced EM shower with no hadronic activity

Light DM

« BSM — light mediators favor low-energy electron recoils :" Aportal
SM neutrino-induced BG — heavy mediators => more “democratic” recoils
» Similar ideas discussed in the literature: emulsion (SND@SHiP, SND@LHC)
LAI‘ (M|n|BOONE'DM) 183 107 18" ERT 152

See also: B. Batell. M. Pospelov. A. Ritz. 0906.5614: P. deNiverville. M. Pospelov. A. Ritz. 1107.4580 Electron recoil E



SM backgrounds (1) — neutrinos

 v-electron scatterings (both electron and muon neutrinos contribute)
- favor larger energy transfer to electron “x=Ee/Ev” & lower recoil angles £, 92 e QmT(l — x)

Iv-e BG reduced to ~30 events in HL-LHC for 100-tonne LAr TPC detector (3mx3mx10m

~10 events for 10-tonne tunsgsten/emulsion det. (0.5mx0.5mx2m)

 v-nuclei scatterings: CCQE, CCRES, CCDIS

- cuts based on electron recoil energy and angle
+ cuts on additional tracks emerging from the vertex

IV-N BG reduced to ~1 eventl

Example signal region in Ee, Be
100

« emulsion: n

- excellent spatial & ang. Res..

- (a priori) no time info = 10

events per
bin per 3ab!

8, (mn

* LAr TPC: ’
- lower energy thresholds :
- probably worse angular res.  °' °¢ L L S oo .
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SM backgrounds (2) — muons

: FASER Collaboration, 1812.09139, FLUKA simulations, CERN STI Group
* Large flux of through-going muons M. Sabate-Gilarte, . Cerutti, and A. Tsinganis
- Some Of them COUId be Swept away ‘ Fluence rate (GeV"' cm2 s™') for muons: 10 GeV threshold

but high-energy ones (especially >TeV) will probably go through the detector
- 0(10%) Hz

negative muons
positive muons

often >100GeV

il

e Muon-induced photons can imitate DM-induced EM showers

- they are displaced from the parent muon track, |
- very challenging to reject them without active muon veto g

fluence rate (GeV"'cm?2?s™)
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lllustration: emulsion FASER-v-like detector e _M‘ 1 A
M - Y - e'e with one of e* or e below the detectability threshold ‘ p—
while other e* or e satisfying Ee and 6e cuts 10 e e
— signal-like, y-> e'e, inv. e m===
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* Information about time crucial to search for signal events A
- in emulsion: additional tracker layers needed; challenges: gm |
- cost and operation e.g. alignment = 10° ‘
- event pile-up in emulsion — matching and vertex identification 10
- in LAr: dynamical time info much easier; challenges and outcome: - ‘ , h
- limitations due to finite drift-time ey S

- combination of time & spatial info to reject muon-induced BG



Some results for DM search

Light Majorana DM with the dark photon mediator

Emulsion: 0.5m x 0.5m x 2m, HL-LHC
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« complementary to missing energy and momentum searches (allows for direct detection)

« artificially boosted DM at the LHC — important if non-relativistic scat. rates suppressed
with LHC it’s “now or never”

e further opportunities: neutrino physics (SM and BSM);



Probing BSM neutrino physics
with scatterings off electrons

BSM neutrino scatterings: HNL scatterings:

- dipole portal to HNLs - model with light Z' mediator

- large far-forward neutrino flux -Z" - HNL HNL production

-ve - HNL e upscatterings - HNL e — HNL e scatterings

- extends the reach to light and very long-lived HNLs - practically independent of the mixing angle

(besides lifetime’
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See also: G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, 1803.03262; See also: P. Ballett, S. Pascoli, and M. Ross-Lonergan, 1808.02915;

Y. Jho, J. Kim, P. Ko, and S. C. Park, 2008.12598



Bi-modal e"e” spectrum due to
secondary production of LLPs

More about secondary production:=) next talk by K. Jodtowski

« Scenario with light HNLs and Z' mediator — originally proposed to solve the MiniBoonE anomaly
E. Bertuzzo, S. Jana, P. A. Machado, and R. Zukanovich Funchal, 1807.09877

« Z' can be produced directly at the ATLAS IP (e.g. in rare pion decays...) [primary]

* Z' can also be produced in neutrino scatterings in front of the FASER decay vessel [secondary]

* Primary Z's — hard spectrum

(only highly-boosted LLPs
survive until the detector) 10

e Secondary Z’s can be softer .|

(production right in front of
the detector favored for long-lived LLPS)
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Concluding remarks

 FASER has pointed out a new direction in the LHC searches

* It will offer amazing opportunities already during Run 3
(SM neutrinos, dark photons, ALPs, ...)

* Much more could be achieved during HL-LHC with the FASER and FASERv
succesors and other experiments (SND@LHC, FORMOSA, LAr TPC detector,...)

* We have illustrated this for the search for light DM and neutrino-induced new

physics, as well as for new-physics models employing high-energy photon
signatures

THANK YOU !l
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