New directions in BSM searches at FASER and beyond

Sebastian Trojanowski

(strojanowski@camk.edu.pl)

AstroCeNT, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences

8th workshop of the LHC LLP Community November 19, 2020

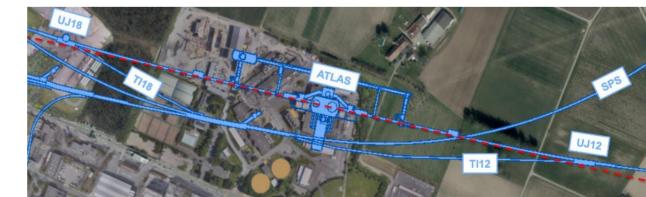
ASTROCENT

F. Kling, ST, 2006.10630 (PRD) K. Jodłowski, ST, 2011.04751 B. Batell, J.L. Feng, ST (to appear)



Far-forward searches at the LHC

Run 3 – FASER / FASERv experiments (approved), SND@LHC (proposed)


FASER Collaboration,1908.02310

talks: Susanne Kuehn, Antonia Di Crescenzo

- HL-LHC (possible upgrade) FASER 2 / FASERv2
- Proposal for HL-LHC: Forward Physics Facility (FPF)

📥 talk Felix Kling

- Distant (~0.5km) detectors with a small angular coverage focus on light particles collimated around the beam collision axis
- Multi-purpose experimental facility
 (various signatures of new physics, SM measurements)
- In the TI12/TI18 tunnels: Standard Model backgrounds highly suppressed besides neutrinoand muon-induced ones; low radiation levels

Experimental signatures

• Displaced LLP decays into two high-energy oppositely charged tracks (main FASER)

THIS TALK

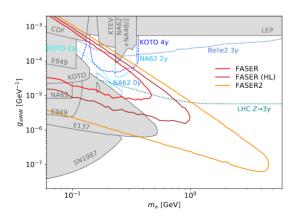
- Neutrino-nuclei scattering events (FASERv, SND@LHC)
- LLP decays to high-energy photons (FASER [preshower detector])
- HL-LHC: scattering of electrons to search DM & study neutrinos
 (SND@LHC, potential future neutrino detectors based on LAr or emulsion technology)

see also A. Ariga, T. Ariga, O. Sato etal Snowmass input

& B. Batell talk at the recent FPF kickoff meeting

Search for milli-charged particles, forward MilliQan-type detector FORMOSA

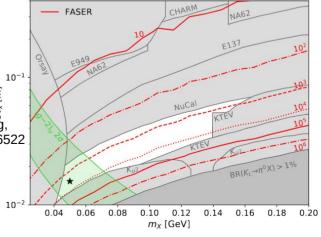
talk Yu-Dai Tsai


Muon physics BSM and SM studies

⇒ST talk at the recent FPF kickoff meeting, with F. Kling & others

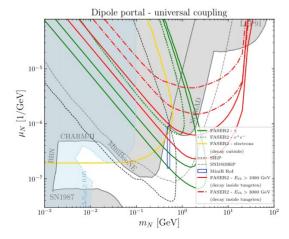
Search for LLP → γγ in FASER

- High-energy photons (>100GeV) at the FASER location are mostly muon-induced
- They can be rejected based on the detection of time-coincident muon
- Additional handles over neutrino-induced BG come from using the preshower detector
- Two time-concident & high-energy photons are even more difficult to be mimicked by the SM
- Example sensitivity reach for ALPs with the di-photon or $SU(2)_{_{W}}$ couplings


J.L. Feng, I. Galon, F. Kling, ST, 1806.02348
F. Kling, ST, 2006.10630,
$$\mathcal{L} \supset -\frac{1}{2} m_a^2 a^2 - \frac{g_{aWW}}{4} a W_{\mu\nu}^a \widetilde{W}_{\mu\nu}^a$$
.

Dark Higgs with non-universal couplings

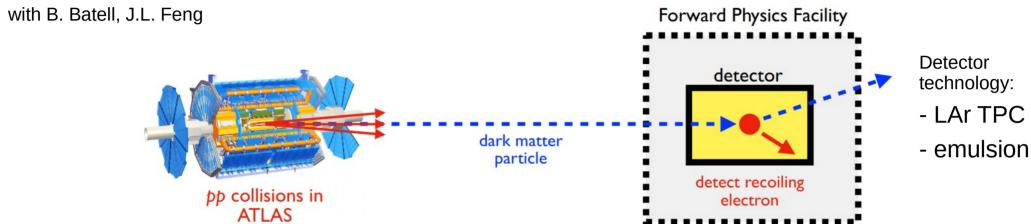
$$\mathcal{L}\supset -\,m_X^2X^2 + \sum \epsilon_q \frac{m_q}{v}\,X\bar{q}q + \sum \epsilon_\ell \frac{m_\ell}{v}\,X\bar{\ell}\ell \\ + \epsilon_W \frac{m_W^2}{v}\,XW_\mu^+W^{\mu-}, \\ \text{J. Liu, N. McGinnis, C. E. Wagner, X.-P. Wang,} \\ 2001.06522$$


- Inspired by the KOTO anomaly
- decays into e^+e^- and yy (~10%)
- up to 10⁴ events in Run 3

Search for LLP $\rightarrow \gamma$ in FASER and emulsion

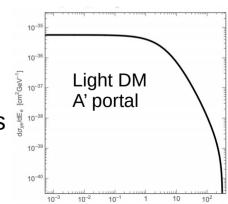
- Single high-energy photon signature in the decay vessel (>100 GeV):
 - requires very good rejection of muon-induced BG
 - could suffer from residue BG from neutrino interactions in the preshower
- In the emulsion detector (FASERv2):
 - focus on very high-energy photons (>1TeV or even >3TeV) to suppress muon-induced BG
- if the EM shower leaks to the electronic detector, time info helps to reject BG

K. Jodłowski, ST, 2011.04751



• Dipole portal to HNLs

$$\mathcal{L} \supset \mu_N \, \bar{\nu}_L \sigma_{\mu\nu} N_R F^{\mu\nu} + \text{h.c.},$$


- G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, 1803.03262;
- ν Z → N Z coherent upscat. to HNL off nuclei (suppressed momentum exchange, no other activity at vertex)
- subsequent N \rightarrow v γ decay (3-body decays to e+e- have BR<1%)
- up to ~10^3 high-energy photons with >3TeV in HL-LHC

Dark matter search (& neutrino studies)

- Search for dark matter scattering off electrons in the electron
- Signature: single-electron-induced EM shower with no hadronic activity
- BSM light mediators favor low-energy electron recoils

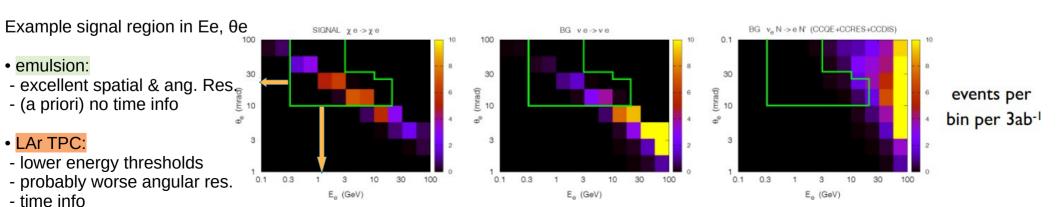
 SM neutrino-induced BG heavy mediators => more "democratic" recoils
- Similar ideas discussed in the literature: emulsion (SND@SHiP, SND@LHC) LAr (MiniBooNE-DM)

credit: Brian Batell

See also: B. Batell, M. Pospelov, A. Ritz, 0906.5614; P. deNiverville, M. Pospelov, A. Ritz, 1107.4580

Electron recoil E

SM backgrounds (1) – neutrinos


- v-electron scatterings (both electron and muon neutrinos contribute)
- favor larger energy transfer to electron "x=Ee/Ev" & lower recoil angles $E_e\, \theta_e^2 \simeq 2m_T(1-x)$

v-e BG reduced to ~30 events in HL-LHC for 100-tonne LAr TPC detector (3mx3mx10m) ~10 events for 10-tonne tunsgsten/emulsion det. (0.5mx0.5mx2m)

- v-nuclei scatterings: CCQE, CCRES, CCDIS
 - cuts based on electron recoil energy and angle

+ cuts on additional tracks emerging from the vertex

v-N BG reduced to \sim 1 event

SM backgrounds (2) – muons

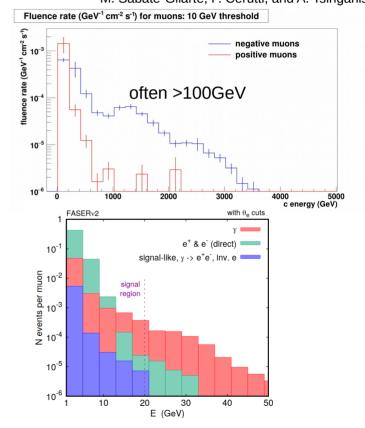
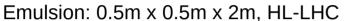
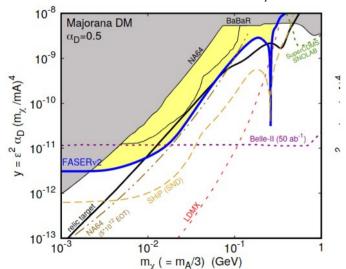

- Large flux of through-going muons
- some of them could be swept away but high-energy ones (especially >TeV) will probably go through the detector $O(10^4)$ Hz
- Muon-induced photons can imitate DM-induced EM showers
- they are displaced from the parent muon track,
- very challenging to reject them without active muon veto

Illustration: emulsion FASER-v-like detector

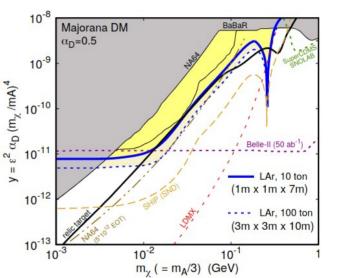
 $\mu \rightarrow \gamma \rightarrow e^+e^-$ with one of e^+ or e^- below the detectability threshold while other e^+ or e^- satisfying Ee and θe cuts

- Information about time crucial to search for signal events
- in emulsion: additional tracker layers needed; challenges:
 - cost and operation e.g. alignment
 - event pile-up in emulsion matching and vertex identification
- in LAr: dynamical time info much easier; challenges and outcome:
 - limitations due to finite drift-time
 - combination of time & spatial info to reject muon-induced BG


FASER Collaboration, 1812.09139, FLUKA simulations, CERN STI Group
M. Sabate-Gilarte, F. Cerutti, and A. Tsinganis

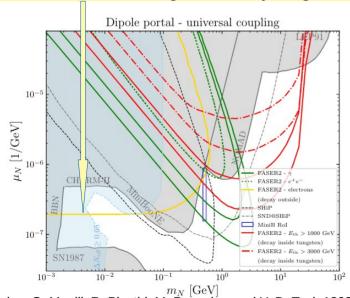


Some results for DM search


Light Majorana DM with the dark photon mediator

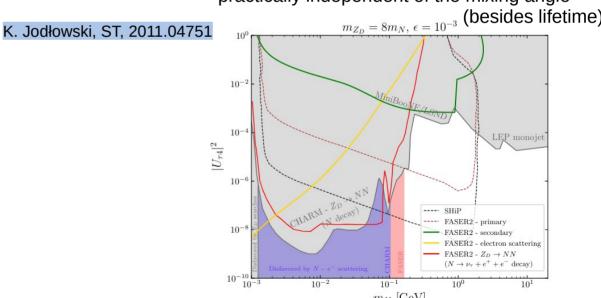
B. Batell, J.L. Feng, ST, to appear

LAr TPC: 10- and 100-tonne. HL-LHC


- complementary to missing energy and momentum searches (allows for direct detection)
- artificially boosted DM at the LHC important if non-relativistic scat. rates suppressed
- further opportunities: neutrino physics (SM and BSM);

with LHC it's "now or never"

Probing BSM neutrino physics with scatterings off electrons


BSM neutrino scatterings:

- dipole portal to HNLs
- large far-forward neutrino flux
- $\nu e \rightarrow HNL e upscatterings$
- extends the reach to light and very long-lived HNLs

HNL scatterings:

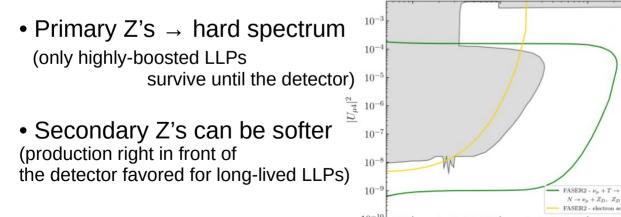
- model with light Z' mediator
- Z' → HNL HNL production
- HNL e → HNL e scatterings
- practically independent of the mixing angle

See also: P. Ballett, S. Pascoli, and M. Ross-Lonergan, 1808.02915; Y. Jho, J. Kim, P. Ko, and S. C. Park, 2008.12598

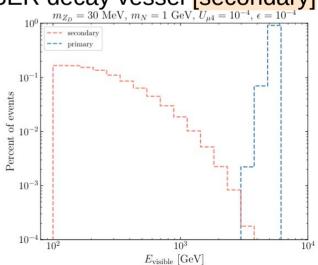
See also: G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, 1803.03262;

Bi-modal e⁺e⁻ spectrum due to secondary production of LLPs

More about secondary production:


→ next talk by K. Jodłowski

- Scenario with light HNLs and Z' mediator originally proposed to solve the MiniBoonE anomaly E. Bertuzzo, S. Jana, P. A. Machado, and R. Zukanovich Funchal, 1807.09877
- Z' can be produced directly at the ATLAS IP (e.g. in rare pion decays...) [primary]


 10^{-1}

• Z' can also be produced in neutrino scatterings in front of the FASER decay vessel [secondary] $m_{Z_D} = 30 \text{ MeV}, \alpha_D = 0.25, \alpha \epsilon^2 = 2 \times 10^{-10}$

 m_N [GeV]

K. Jodłowski, ST, 2011.04751

Concluding remarks

- FASER has pointed out a new direction in the LHC searches
- It will offer amazing opportunities already during Run 3 (SM neutrinos, dark photons, ALPs, ...)
- Much more could be achieved during HL-LHC with the FASER and FASERv succesors and other experiments (SND@LHC, FORMOSA, LAr TPC detector,...)
- We have illustrated this for the search for light DM and neutrino-induced new physics, as well as for new-physics models employing high-energy photon signatures

THANK YOU!!!