Searches for LLPs with CMS

Eighth LHC LLP Community Workshop

Joey Reichert

on behalf of the CMS Collaboration

Cornell University joey@cern.ch

November 16, 2020

Joey Reichert (Cornell)

Searches for LLPs with CMS

F

Existing CMS LLP Searches

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

CMS has covered a wide range of models and LLP signatures across many orders of magnitude in ct

CMS Exotica Summary Plots

CMS Highlights from LLP7 (May 2020)

Distinct signature!

Arises naturally in AMSB and compressed SUSY scenarios with $\mathcal{O}(100 \text{ MeV})$ splittings

Charginos excluded for pure W LSP scenarios up to 474 GeV and 0.2 ns (175 GeV and 0.05 ns for H LSP)

Joey Reichert (Cornell)

November 16, 2020

LLP7 slides from B. Francis

CMS Highlights from LLP7 (May 2020)

Dedicated trigger selects events containing jets with ≤2 prompt tracks

Reconstruct SVs using pairs of jets; use a NI-veto map and a GBDT to suppress background.

Sensitive to many LL models with decays within the tracker (~1 mm to ~1 m)

LLP7 slides from J. Luo

Search for strongly interacting massive particles with trackless jets

EXO-17-010

SIMP model

Most DM searches focus on WIMPs, but SIMPs can be DM too!

• Repulsive SIMP-nucleon couplings to avoid bound states

SIMPs (χ) produced via mediator (φ) and interact strongly with SM.

- Simplified model (<u>1503.05505</u>) has couplings which result in hadronic showers that start and are contained in the HCAL
- Model in GEANT4 as a heavy neutron (w/ adjustable mass)

Search Strategy

SIMPs have small fraction of their energy from charged particles.

Use ChF as the primary discriminator against background!

Event Selection

Baseline Selection	Search Region	Control Sample	
Trigger: jet p⊤ > 450 GeV	Both jets with ChF < 0.05	At least one jet with ChF > 0.25	
with $p_T > 550$ GeV, $ \eta < 2$, and $\Delta \phi > 2$	Repeat selection with alt. reco using different PV hypothesis	Use a "tag-and-probe" method to measure ε(ChF < 0.05) with	
Veto potential photon and beam halo backgrounds	(avoid trackless jets in background due to pileup track suppression)	these events	
Use 16.1 fb ⁻¹ of 2016 data (w/o silicon strip readout issues)			

Data-Driven Background Estimation

Joey Reichert (Cornell)

Searches for LLPs with CMS

Joey Reichert (Cornell)

Searches for LLPs with CMS

Results

SIMPs excluded for masses up to 900 GeV!

Search for long-lived particles decaying to jets with displaced vertices

EXO-19-013

Extension of <u>1808.03078</u>, now with the full Run 2 dataset (+ the upgraded CMS Pixel Tracker)

Joey Reichert (Cornell)

Searches for LLPs with CMS

Signal Models

Many models predict final states w/ hadronically decaying pairs of LLPs

- RPV SUSY benchmark models, but the search is model-independent!
- Use high-quality displaced tracks to reconstruct the LLP decay points as two displaced vertices
- Select events using H_T trigger; require $H_T > 1200$ GeV and ≥ 4 jets

Suppression of pileup tracks

During vertex reconstruction, remove any tracks that significantly affect vertex z position by $> 50 \ \mu m$

Reduces background by 40% with small impact on signal efficiency!

Search Strategy

Joey Reichert (Cornell)

Data-Driven Background Estimation

Background-dominated

single vertex events are
 used to construct a
background dvv template
 in data using:

- Two random d_{BV} values
- Randomly chosen Δφ_{VV}, estimated via jet angles
- Corrections for b-quarks (larger displacements) and overlapping vertices

Background Validation

Signal Efficiency and Systematics

Manually displace tracks from SM jets in data and MC to create artificial displaced vertices.

Measure vertexing ε to determine ε corrections and systematic uncertainties to apply to signal MC.

Joey Reichert (Cornell)

Searches for LLPs with CMS

≥5-track 2-vertex Search Region

Joey Reichert (Cornell)

≥5-track 2-vertex Search Region

Joey Reichert (Cornell)

≥5-track 2-vertex Search Region

Results

Reinterpretation recipe available in EXO-19-013!

Hadronic LLP Summary

Summary

CMS has a well-established LLP search program

- No evidence for new LLPs yet
- However: we have a huge phase space to cover with many potential exotic signatures
- Plenty of new ideas can be explored
 - with the existing Run 2 data
 - as well as the future Run 3 and HL-LHC data!

Backup

Joey Reichert (Cornell)

Searches for LLPs with CMS

November 16, 2020 29

LLP Signatures

CMS Detector and a Sense of Scale

Joey Reichert (Cornell)

Searches for LLPs with CMS

Phase-1 Pixel Detector Upgrade

Displaced Vertices Event Yields

Observed in control samples + search region:

Event category	3-track	4 -track \times 3 -track	4-track	≥5-track
one-vertex	61818		14730	2211
two-vertex	185	101	12	0

Observed and predicted in search region bins:

		Predicted multijet signal yields			
$d_{\rm VV}$ range	Predicted background yield	0.3 mm	1.0 mm	10 mm	Observed
0–0.4 mm	0.235 ± 0.003 (stat) ± 0.059 (syst)	0.7 ± 0.2	0.7 ± 0.1	0.20 ± 0.02	0
0.4–0.7 mm	0.096 ± 0.003 (stat) ± 0.031 (syst)	0.8 ± 0.2	1.1 ± 0.2	0.10 ± 0.01	0
0.7–40 mm	0.011 ± 0.001 (stat) ± 0.006 (syst)	0.8 ± 0.2	5.4 ± 0.9	12 ± 1	0

800 GeV, σ = 0.3 fb

Note: Overall normalization of the background template: $N_{pred} \approx (bkg vertex \epsilon)^2 w/ corrections à la template construction$

Displaced Vertices Background Validation

Events with pairs of vertices with <5-tracks used to validate the procedure—good agreement observed!

(and any differences used as syst uncertainty)

Displaced Vertices Signal Efficiencies

Systematics

SIMP signal systs

DV signal systs

		Systematic effect	Dijet uncertainty (%)	Multijet uncertainty (%)	
source	uncertainty	Vertex reconstruction	11–41	1–36	
jet energy corrections	2.2 - 5.4%	PDF uncertainty	1–8	1–8	
intograted luminosity	2 50/	Integrated luminosity	2–3	2–3	
integrated fullinosity	2.0 /0	Jet energy scale	5	5	
trigger inefficiency	2%	Jet energy resolution	2	2	
		Pileup	2	2	
		Trigger efficiency	1	1	
		Changes in run conditions	1	1	
		Overall	13-42	7-36	

DV background systs

	Shift \pm Statistical Uncertainty (%)		
Systematic effect	0–0.4 mm	0.4–0.7 mm	0.7–40 mm
Closure in 3-track control sample	1 ± 10	7 ± 12	38 ± 32
\geq 5-track template normalization factor	23 ± 7	23 ± 7	23 ± 7
Difference from 3-track vertices to \geq 5-track vertices:			
Modeling of vertex pair survival efficiency	$9\pm < 0.5$	20 ± 1	25 ± 5
Modeling of $\Delta \phi_{VV}$	$3\pm < 0.5$	6 ± 1	5 ± 3
Variation of b-tag fraction	$1\pm < 0.5$	3 ± 1	5 ± 3
Variation of b-tag correction factors	$0\pm < 0.5$	$0\pm < 0.5$	1 ± 1
Overall	25 ± 12	32 ± 14	51 ± 33