Exotic Higgs decays into displaced jets at the LHeC

work with Kingman Cheung, Oliver Fischer, Jose Zurita arXiv: 2008.09614 Zeren Simon Wang

Eighth workshop of the LHC LLP Community Nov. 19, 2020

(日本)

Motivation

- Surge of interest in LLPs in recent years (Why we are here!)
- Portals connecting the SM to a hidden sector:
 - Vector portal (dark photon)
 - Neutrino portal (heavy neutral lepton)
 - Pseudoscalar portal (axion-like particle)
 - Higgs portal (dark Higgs)
- Higgs boson: discovered in 2012, center of studying the underlying physics of Electroweak Symmetry Breaking
- Important to study the properties of the Higgs boson
- Higgs factories: CEPC, FCC-ee, ILC, LHeC, FCC-he, etc.
- \bullet A large and clean sample of the Higgs bosons at the LHeC $\sim 10^5$ allows for studying Higgs rare decays

うかん 正正 ヘビト・モー・ ふんし

The SM extended with a complex singlet scalar

$$V(H,S) = -\mu_1^2 H^{\dagger} H - \mu_2^2 S^{\dagger} S + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (S^{\dagger} S)^2 + \lambda_3 (H^{\dagger} H) (S^{\dagger} S)$$

- Mixing between h_1 and h_2
- The dominant Higgs production at *ep* colliders: *charged-current vector-boson fusion*

Signature: $p e^- \rightarrow \nu_e j h_1 \rightarrow \nu_e j h_2 h_2 \rightarrow \nu_e j (b\bar{b})_{\text{displaced}} (b\bar{b})_{\text{displaced}}$

Production, decay, signature

• Production:

$$\Gamma(h_1 \to h_2 h_2) \simeq \frac{1}{32\pi m_{h_1}} (\lambda_3 v)^2 \left(1 - \frac{4m_{h_2}^2}{m_{h_1}^2}\right)^{1/2} \simeq \frac{\sin^2 \alpha (m_{h_1}^2 - m_{h_2}^2)^2}{32\pi m_{h_1} x^2} \left(1 - \frac{4m_{h_2}^2}{m_{h_1}^2}\right)^{1/2}$$

• Decay:
$$\Gamma(h_2 \to f\bar{f}) = \frac{N_C(Y_f \sin \alpha)^2}{8\pi} m_{h_2} \left(1 - \frac{4m_f^2}{m_{h_2}^2}\right)^{3/2}$$

• Total width:
$$\Gamma_{\text{tot}} = \sum_{f} \Gamma(h_2 \to f\bar{f})$$

• Decay length:
$$c\tau = rac{c}{\Gamma_{
m tot}} \approx 1.2 imes 10^{-5} \left(rac{10^{-7}}{\sin^2 \alpha}\right) \left(rac{10 \ {
m GeV}}{m_{b_2}}\right) \ {
m m}$$

- 10

• Numerically using <code>HDECAY</code> for $\Gamma_{\rm tot}$ and $\Gamma_{b\bar{b}}$

(日) 문 ((日) (日) (日) (日)

Simulation detail

- Parton level: MadGraph 5 3.0.2 with Hidden Abelian Higgs Model:
 - 10 GeV $< m_{h_2} < m_{h1}/2$, 10 $^{-12}$ m < c au < 100 m
 - $p_T^{b,j} > 5$ GeV, $\eta^{b/j} < 5.5$, $\Delta R(b, b/j) > 0.2$
- Showering & hadronization: Pythia 6 patched for ep collider studies
- Detector simulation: Delphes 3.3.2 customized with a displaced-jets module [Nemevšek, Nesti, Popara 2018]:
 - the transverse displacement of a jet $d_T(j) = \sqrt{d_x^2(j) + d_y^2(j)}$ is defined to be the minimum d_T of all the tracks associated to the jet which are required to have a transverse momentum larger than a certain threshold:

 $\Delta R(track, j) < 0.4, p_T(track) > 1 \text{ GeV}$

- Background processes: $p + e^- \rightarrow \nu_e + j + n_b b + n_\tau \tau + n_j j$ for $n_b + n_j + n_\tau \le 4$
- In principle, the prompt jet background (n_j > 0) leads to no displaced objects, but a huge cross section times a tiny selection efficiency still generate a handful of events

Event selection

- **1** Number of reconstructed jets: $n_J \ge 5$
- 2 $n_{\text{disp.}J} > 0$ with disp. reconstructed jets defined to be $d_T(J) > 50 \ \mu\text{m}$
- So Disp. jets J_i and J_j belong to the same group if $|d_T(J_i) - d_T(J_j)| < 50 \ \mu m$, require at least 1 "heavy group": $n_{hG} \ge 1$ with $m_{hG} > 6$ GeV
- Invariant mass of all heavy groups combined $m_{SS} \in [100, 150]$ GeV
- Solution Require $n_{hG} = 2$

$$\begin{split} N_{S} &= N_{h_{1}} \cdot \mathsf{Br}(h_{1} \to h_{2}h_{2}) \cdot \left(\mathsf{Br}(h_{2} \to b\bar{b})\right)^{2} \cdot \epsilon^{\mathsf{pr-cut-XS}} \cdot \epsilon_{S}^{\mathsf{cut}}, \ N_{h_{1}} = 1.1 \times 10^{5} \\ N_{B} &= \sum_{i=1}^{12} \mathcal{L}_{\mathsf{LHeC}} \cdot \sigma_{B_{i}} \cdot \epsilon_{B_{i}}^{\mathsf{cut}} \ (12 \text{ bgd processes}), \ N_{B} = 195 \end{split}$$

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Model-independent results for $N_B = 195$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model-independent results for $N_B = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary of results

- With bgd taken into account, LHeC can probe Br(h₁ → h₂h₂) down to O(1‰), much better than the current LHC (HL-LHC) limits: Br(h₁ → invisible) ≃ 13% (2.5%)
- The most sensitive regime: 10^{-4} m $< c\tau < 10^{-1}$ m and 12 GeV $< m_{h_2} < 20$ GeV
- For $c\tau < 1 \ \mu$ m the h_2 decay is practically prompt. The reconstructed displacement of the final state cannot be disentangled from displaced decays of B mesons. Thus, efficiencies are much lower than those of long lifetime
- For those with c au > 0.1 m, the decay of h_2 would be outside the IT
- In the ideal case $N_B=0$, the sensitivity can reach ${
 m Br}(h_1 o h_2 h_2) \sim 10^{-4}$

Conclusions and outlook

- The copious production of the SM Higgs at the LHeC with its clean environment allows for searching for long-lived light scalars pair-produced from *h*₁
- The LHeC can reach ${\sf Br}(h_1 o h_2 h_2)$ down to ${\cal O}(10^{-4}-10^{-3})$
- We performed a detector-level analysis making use of fast detector simulation instead of truth-level geometric cuts, which can be extended for more LLP scenarios

Thank You!

Backup: total width of a SM-like h_2 and its BR into $b\bar{b}$

Numeric results obtained by HDECAY

-