CMS Perspective on Dark Showers

Kevin Pedro (FNAL) November 17, 2020

Phenomenology

Soft unclustered energy patterns (SUEPs)

- CMS is exploring all of these signatures
 - o Also different production modes, decay assumptions, etc.
- First collider search for dark showers: emerging jets (16.1 fb⁻¹) EXO-18-001, JHEP 02 (2019) 179, arXiv:1810.10069

Event Generation

Several different methods:

- Generation & hadronization w/ Pythia8 Hidden Valley (HV) Module
 - o Used for CMS searches so far
 - o Employs (modified) copy of SM hadronization model
 - o Leading order processes: Z' production, Φ pair production
- Generation w/ MadGraph, hadronization w/ Pythia8 Hidden Valley module
 - o Being explored for new searches
 - ISR modeling more important in some cases
 - Some processes not available in Pythia8 (e.g. *t*-channel)
 - o FeynRules models from: smsharma/SemivisibleJets
- Some parameters (lifetimes, branching fractions, etc.) often calculated "by hand" and passed to Pythia8
- ➤ "Wish lists" in backup: uncertainties are major item

Jet Triggers

- CMS dark QCD searches currently trigger on jet p_T or $H_T = \sum p_T(jet)$
 - o Run 2 thresholds: jet $p_T \sim 500$ GeV, $H_T \sim 1000$ GeV
 - \circ Can also use "substructure" triggers (e.g. $m_{trim} > 50 \text{ GeV}$)
 - Slightly reduce p_T/H_T thresholds, improve efficiency
- Beginning to explore "scouting" data
 - o Save just HLT Particle Flow objects
 - CMS HLT uses simplified reconstruction: fewer tracking iterations, etc.
 - o Lower trigger thresholds: $H_T \sim 400 \text{ GeV}$

arXiv:1808.00902

Other Triggers

- \mathbb{E}_{T} triggers: for cases with large fraction of invisible dark hadrons, or very long-lived dark hadrons (decay outside of detector)
 - o CMS thresholds are high: typical offline cut $\geq 250 \text{ GeV}$
 - Exact offline cut depends on kinematic phase space
- Jet- $\mathbb{E}_{\mathbb{T}}$ triggers: offline $\mathbb{E}_{\mathbb{T}}$ threshold typically still high, small value added
- Displaced triggers: not clear yet if basic ones work well for emerging jets

Future Triggers

- L1 Track Trigger
 - o Part of CMS Phase 2 upgrades
 - o May enable new seeds for emerging jet trigger: displaced tracks, impact parameters
 - Track p_T threshold expected to be 2 GeV
 - Consider "L1 scouting" for lower thresholds?
- Anomaly detection (e.g. <u>arXiv:1811.10276</u>)
 - Use machine learning to find events that differ from expected processes
 - Need to understand how backgrounds can be reliably estimated
 - o Deploy at L1 using <u>hls4ml</u>
 - o Deploy at HLT using <u>SONIC</u> (inference as a service)

Simulation & Reconstruction

- Dark QCD models have many parameters
 - o A single search may cover 100s, 1000s, or more specific signal models
- Full detector simulation is time consuming
 - o Explore whether parametric fast simulation provides sufficient accuracy for signal samples
- Backgrounds often arise from reconstruction failures & instrumental sources
 - o Tracking failures, hot/dead/weird cells, etc.
 - o Delphes often does *not* model these correctly
 - → pheno papers may underestimate backgrounds / overestimate sensitivity
- Custom algorithms and low-level information needed for optimal results
 - o Can pose challenges for offline processing and disk usage of analysis data
 - o Pursuing columnar analysis using Coffea for new searches
 - o Phase 2: MIP Timing Detector will augment vertexing capabilities

Conclusion

- CMS Dark QCD program is expanding
 - o Investigating semi-visible jets, emerging jets, SUEPs
- Generators work sufficiently to provide signal samples to optimize and interpret analysis results
 - o But many wish list items to improve capabilities
 - o Generator uncertainties are a hot topic
- Currently, primarily jet-based trigger strategies are pursued
 - o Other strategies (\mathbb{E}_{T} , displaced, etc.) under consideration
 - Future prospects are good: L1 track trigger, anomaly detection
- Simulation and reconstruction also pose some (technical) challenges
- Look forward to more Run 2 results soon!
 - o Later: Run 3 and Phase 2 datasets will improve statistical limitations

Backup

Generator Wish List

Pythia8:

- More processes (e.g. *t*-channel)
- Uncertainties as event weights
 - o *Not viable* for searches to use different signal samples for each uncertainty variation
 - → need event weights, even if less "accurate"
 - o Pythia8 only provides SM parton shower weights
 - PDF weights can be recalculated on the fly
 - μ_R/μ_F weights *not* available
 - o Would like to be able to vary HV parameters separately
- Hook to control flavor combinations for dark hadrons
 - o Currently implemented as a hack (<u>kpedro88:emg/230</u>) for flavored emerging jet models (<u>arXiv:1803.08080</u>)
 - o Add dark baryons? (HV module only has dark mesons)

Generator Wish List (cont.)

- Common tools to calculate dark hadron lifetimes and branching fractions
 → being considered as part of Snowmass efforts
- Comparison of SUEP hook (<u>suep_generator</u>) to Pythia8 "thermal" model
- Use of extra-dimension model for "intermediate" shower case (between jet-like and SUEP-like) (speculative, <u>arXiv:2009.08981</u>)

MadGraph:

- More standard support for common BSM processes (esp. *t*-channel)
 - o Relevant for many DM searches, even beyond dark showers
 - o FeynRules models can be tricky to use: decay width computation, reliability of phase space integration...
- Ability to add new *SU*(*N*) gauge groups
 - o Improve modeling of HV radiation
 - o Currently difficult (or even impossible?)