LLP at future colliders

- Overview experimental perspective -

Ryu Sawada ICEPP, the University of Tokyo 18. Nov. 2020 8th workshop of the LHC LLP community

Future colliders

HL-LHC

- Upgrade of the detector and 10× integrated luminosity will give large gain in LLP searches.
 - Higher geometrical acceptance
 - Higher granularity/resolutions of the detector
 - Improved trigger, including tracking
 - Timing detectors
 Many results have been presented in this series of workshops
- But there are some negative impact too.
 - High pileup late may increase the BG rate and/or decrease the signal efficiency.
 - For saving CPU and storage, some objects could be dropped (e.g. low-pT tracks?)
 - New detector layout may not be the best for some analyses.

HL-LHC: Tracker layout (ATLAS)

Disappearing track

Timing information @ HL-LHC

Lepton collider

- "An electron-positron Higgs factory is the highest-priority next collier" -European strategy
 - (Not so heavy) LLP searches from Higgs decays are natural candidates of the next field to explore.
 - Much cleaner environment than ones in a hadron-machine.
 - Fine-segmented particle-flow oriented detector design.
 - Data and processing-time may not be a big concern (compared to a hadron-machine).
 - More complex trigger- and offline-reconstruction algorithms, which require more CPU and output data, could be used.

Lepton collider: detector performance

	LHC	ILC
Innermost vertex layer to IP	3.3 cm	1.4 cm
Layer 4 radius	12 cm	4.8 cm
Inner-most pixel size	50 × 250 μm	20 × 20 µm
Material in tracker (central)	0.4–0.5 X ₀	~ 0.10–0.15 X ₀
1/p _T reresolution	34 × 10 -5 / GeV	5 × 10 -5 / GeV
Impact parameter resolution	~20 µm	~5 µm
Low pT tracking	pT > ~0.5 GeV are kept	Efficient down 0.2 GeV
EM calo number of channels	76k	100M

LLP from Higgs decays

IΡ

arXiv:1812.05588

 $e^+e^- \to hZ$ followed by $h \to XX$

Analysis:

- Clustering particles whose origin is within 7um.
- Impact parameter: average of all particles.

 $Z \to \ell \bar{\ell}$

- "long lifetime" analysis: $d_{min} = 3 \text{ cm}$, $M_{charged} > 2 \text{ GeV}$
- "large mass" analysis: $d_{min} = 5 \ \mu m$, $M_{charged} > 6 \ GeV$

Disappearing track at C C

- Stub track candidate:
 - · At least four hits in the tracking system
 - Prompt, isolated track
 - Minimum transverse momentum
 - Disappearing within the tracking syster volume
 - No energy deposition in the calorimeter
 - Additional: dE/dx requirement
- At least one stub candidate per event
- Additional: soft displaced pion(s) and additional photons

Expected sensitivity by a truth-level study covers the thermal DM mass limit (~1 TeV).

arXiv:1812.02093

Soft pion reconstruction

Erica Brondolin, Emilia Leogrande: 7th LHC LLP

e-p colliders: LL chargino

- e-p collider have "middle" feature between lepton and hadron colliders
 - Higher collision energy than lepton colliders
 - Cleaner environment than hadron colliders e.g. nileun~1 at FCC-eh (60)

e-p colliders: dark photon

arXiv:1909.02312

Unique coverage of low mass, intermediate coupling regime, complementary to other present and planned experiments.

Disappearing track @ FCC-hh Eur. Phys. J. C (2019) 79:469

R.Sawada

consistent hit times as a single particle from IP

Time information @ FCC

- Hit-time information at each silicon layers can be used for two purposes,
 - 1. BG fake tracks (random-combination) decrease by requiring consistent time of pixel-hits on track.
 - 2. Measure the velocity of a particle.
 - Vertex time can be determined by other objects (e.g. jets)
 - If hit-time resolution is 20 ps, velocity resolution for charginos could be ~6%.

Interesting detector developments (AC-LGAD, Monolithic-LGAD...) are on-

going. <u>Gabriele D'Amen</u>, Snowmass

A dream LLP detector?

HEPData

- Running experiments usually submit published-paper data to HEPData
 - Numerical values of histograms and graphs
 - Additional material for re-interpretation (efficiency, acceptance etc)
 - Simplified C++/python code to reproduce the analysis.
- Why don't we do also for studies on future colliders ?
 - LLP studies often require significant code development for estimation of efficiency and acceptance.
 - E.g. development of tracking code, special LLP event simulation, massive CPU-time for Geant4 simulation, etc.
 - By sharing data would benefit/accelerate/promote future-collider studies.
 - Actually, we put data from our paper (DT@FCC) on HEPData.

doi: 10.17182/hepdata.90451

٠

Conclusion

- There are many proposals in Snowmass, which I couldn't cover in this talk, please check them out!
- What is limiting the current search ? (Inefficiency of large radius tracks, track-level particle ID, displaced lepton, displaced-vertex resolution, time resolution or DAQ window...)
 - It may be interesting to surveying from analysis experts on detector limitations, then to ask detector experts if we can improve.
 - Such a wish-list may be useful for detector experts to develop new detector technologies.
- Designing an "LLP-builtin" detector would be fun!
 - Freely thinking may result an spin-off for nearer-future, i.e. HL-LHC (?)