Lyman- α constraints on non-standard dark matter

Deanna C. Hooper

(they/them)

Based on 2206.08188 (and 2110.04024, 1907.01496)

IDM, Vienna 19th July 2022

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Lyman- α data

- Absorption lines produced by the inhomogeneous IGM along different line of sights to distant quasars
- Allows us to trace hydrogen clouds \rightarrow smallest structures
- Provides a tracer of the matter power spectrum at high redshifts $(2 \le z \le 5)$ and small scales $(0.5 h/Mpc \le k \le 20 h/Mpc)$
- Can constrain models that affect small scale structure formation
- IGM filament modelling requires nonlinear evolution: this needs hydrodynamical simulations → parameter scans are not feasible

Lyman- α data and ΛCDM

How to use Lyman- α data

• Focus on the *shape* of the suppression in the matter power spectrum

- Use grids of hydro sims for over 200 different benchmark $\alpha\beta\gamma$ or $\alpha\beta\gamma\delta$, with a corresponding χ^2 given by Lyman- α data (MIKE/HIRES)
- Interpolate in grid, obtain a χ^2 from Lyman- α data for specific model

Non-standard dark matter

- Current dark matter paradigm: cold, collisionless, nonbaryonic matter that interacts gravitationally
- Non-cold dark matter: warm or mixed warm+cold, sterile neutrinos, ...
- Interactions: neutrinos, baryons, dark radiation, photons, SIDM, …
- All of these models (NSDM) change DM clustering and induce a small-scale suppression of power

Non-standard dark matter

- Current dark matter paradigm: cold, collisionless, nonbaryonic matter that interacts gravitationally
- Non-cold dark matter: warm or mixed warm+cold, sterile neutrinos, ...

 $\alpha\beta\gamma$ [2] $(\alpha\beta\gamma\delta$ [1]) $(\alpha\beta\gamma+\delta$ [1,3])

 $\alpha\beta\gamma\delta$ [1]

- Interactions: neutrinos, baryons, dark radiation, photons, SIDM, ...
- All of these models (NSDM) change DM clustering and induce a small-scale suppression of power

Non-standard dark matter

- Current dark matter paradigm: cold, collisionless, nonbaryonic matter that interacts gravitationally
- Non-cold dark matter: warm or mixed warm+cold, sterile neutrinos, ... $\alpha\beta\gamma$ [2]

 $\alpha\beta\gamma\delta$ [1]

 $(\alpha\beta\gamma\delta^{[1]})$ $(\alpha\beta\gamma+\delta^{[1,3]})$

- Interactions: neutrinos, baryons, dark radiation, photons, SIDM, ...
- All of these models (NSDM) change DM clustering and induce a small-scale suppression of power

(Mixed) Warm dark matter

DM - baryon interactions

Deanna C. Hooper - University of Helsinki

IDM, July 2022

DM - baryon interactions

Hooper et al. 2206.08188

IDM, July 2022

Summary

- New Lyman- α likelihoods to constrain many non-standard dark matter models, including mixed models
- WDM bounds provide a cross-check, updated bounds on mixed models
- We previously found that Lyman- α data prefer non-zero interactions between DM and neutrinos (using $\alpha\beta\gamma$)
- Newer, more accurate $\alpha\beta\gamma\delta$ likelihood finds similar mild preference for interactions between DM and baryons
- Lyman- α data seem to prefer a non- Λ CDM flux: this data has great potential for discovery

Thank you for your attention

Grid of simulations

DM - baryon cross-checks

Figure 9: Model with $\sigma_{\text{DM-b}} = 6.2 \cdot 10^{-26}$ and $f_{\text{DM-b}} = 0.23$. The colors are [z = 4.2-blue, z = 4.6-orange, z = 5.0-green, z = 5.4-red]. The faint lines in the background are the additional simulation spectra themselves, which are then corrected using the astro/kriging grid in solid lines. The dashed lines are instead the predictions from the simulation grid. The triangle correspond to HIRES data, while the squares correspond to MIKE data. Left: Bounded method. Right: Regularised method.

Hooper et al. 2206.08188

DM - neutrino interactions

DM - neutrino interactions

DM - neutrino interactions

Lyman- α data and ΛCDM

