# The ANDROMeDa Project

Searching for Light Dark Matter with Aligned Carbon Nanotubes

Gianluca Cavoto, Carlo Mariani Sapienza University and INFN Rome

Francesco Pandolfi, Ilaria Rago **INFN** Rome

Alice Apponi, Alessandro Ruocco Roma Tre University and INFN Rome 3

14<sup>th</sup> International Conference on Identification of Dark Matter - 18-22 July 2022

#### ADDROMEDA

Aligned Nanotube Detector for Research On MeV Darkmatter



Istituto Nazionale di Fisica Nucleare

























### The ANDROMeDa Project

Awarded MUR-PRIN2020 grant (1M€)

- 3-year project, started in 2022
- 3 units: INFN (F. Pandolfi, P.I.) Sapienza (G. Cavoto) Roma Tre (A. Ruocco)
- Dark-PMT: aligned nanotubes target for electron recoil
- Main objective: have a working dark-PMT prototype by end of project

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022





#### ADROMEDA

Aligned Nanotube Detector for Research On MeV Darkmatter





### anode

#### Solid State Targets: The Advantage of 2D Materials

**Energy** to extract an electron from carbon 

- $\Phi_e \sim 4.7 \text{ eV}$ , so  $K_e \sim 1-50 \text{ eV}$  (m<sub>DM</sub> = 10-100 MeV)
- Extremely **short** range in matter!
- 2D materials: electrons ejected **directly** into vacuum \*
  - Graphene and carbon nanotubes ullet
- Vertically aligned carbon nanotubes
  - Highly anisotropic density

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022

**Single-wall** nanotube

Graphene











## Directional sensitivity by design

DM

**e**-

DM



#### Si substrate

**e**-

### Growing Vertically Aligned Carbon Nanotubes in the Lab

- New state-of-the-art nanotube facility in Rome Sapienza
  - Thanks to ATTRACT funding
  - Growing nanotubes with Chemical Vapor Deposition
  - Up to 400  $\mu m$  in length, on different substrates









#### Nanotube Detector Concept: the 'dark-PMT'



'Dark-photocathode' of aligned **nanotubes** \*

- Ejected e<sup>-</sup> accelerated by electric field
- Detected by solid state e<sup>-</sup> counter

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022

#### **Dark-PMT features:**

- Portable, cheap, and easy to produce  $\bullet$
- Unaffected by thermal noise ( $\Phi_e = 4.7 \text{ eV}$ )
- **Directional sensitivity**



#### Two Arrays of dark-PMTs to search for a Dark Matter orginal

····



### BG discrimination: Single-/Multi- Electron Event



Alice Apponi

- Benchmark: Avalanche Photo-Diodes (APD)
  - Simple, cost-effective
  - Hamamatsu windowless APDs
- Possible upgrade: Silicon Drift Detectors (SDD)
  - Ultimate resolution
  - FBK (SDD) + PoliMi (electronics)
- Alternative: MicroChannel Plate (MCP)
  - Optimized for electrons
  - Quite poor energy resolution
- Dark-PMT: Novel Detector for Light DM, IDM2022











#### APD Characterization with 30 - 900 eV Electrons at Roma Tre

- Electron gun in LASEC Lab @ Roma Tre
  - Electron energy range 30 900 eV
  - Energy resolution 45 meV
  - Stable continuous current down to a few fA
  - Beam spot ~ 0.5 mm
- Reading APD bias current when shooting gun on it
  - Clear linear correlation with gun current

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022



A. Apponi et al 2020 JINST **15** P11015





#### MCP Characterization with 30 - 900 eV Electrons at Roma Tre



• Absolute efficiency ~49% constant with energy

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022



#### Conclusions

- **Carbon nanotubes:** exciting new material for dark matter detectors \*
  - 2D material: recoiling electrons ejected directly into vacuum

**'Dark-PMT'** dark matter detector concept \*

- Portable, no thermal noise, directional sensitivity
- In principle sensitive to electron recoils of a few eV
- Capable of extending reach to masses below 40 MeV

#### ANDROMeDa: a young and ambitious program in Rome \*

Aiming to build first working Dark-PMT prototype by 2025

Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022



#### DROMEDA

Aligned Nanotube Detector for Research On MeV Darkmatter







#### BACKUP





### Aligned Nanotubes: a Highly Anisotropic Target



Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022

Raman analysis after Ar+ bombardment

- Lateral penetration < 15 μm</li>
- Longitudinal damage along full length (180 µm)
- Highly anisotropic density









#### Two Arrays of dark-PMTs to Search for a Dark Matter Signal



Alice Apponi

Dark-PMT: Novel Detector for Light DM, IDM2022

In principle sensitive to eV electrons!



#### MCP Pulse Height Distribution



Alice Apponi



## Directionality To (One Day) Pierce Neutrino Floor

 $10^{-36}$ **Directionality**: link a signal with region of the sky \* کے 10<sup>−38</sup> • DM 'wind' expected to come from **Cygnus** constellation **CRESST (2019)** section  $10^{-40}$ CDMSLite (2018) But **also** to be insensitive to neutrino floor DarkSide-50 (2018)  $10^{-42}$ Cross • Low mass neutrino floor mostly from **solar** neutrinos XENON1T (2019)  $10^{-44}$  -SI DM-nucleon Cygnus never overlaps with Sun **Directionality**  $10^{-46}$ solar 26th Feb. 6th Sep. Neutrino coherent scattering neutrinos 3.3333 - 5 keV 3.3333 - 5 keV  $10^{-48}$  $10^{-50}$ 10<sup>0</sup>



Dark-PMT: Novel Detector for Light DM, IDM2022



### Dark-PMT Prototype 'Hyperion-II' Taking Data in Rome



![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)