iDM@IDM: The ups and downs of inelastic Dark Matter

Electron recoils from terrestrial upscattering

2112.06930 – Timon Emken, JF, Saniya Heeba, Felix Kahlhoefer

Jonas Frerick (jonas.frerick@desy.de) 19.07.22, Vienna

What is inelastic DM?

Off-diagonal interactions

Doodles by @saniaheba

(Small) mass splitting δ

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{er}}} = \frac{\rho}{m_{\chi}} \frac{\sigma_{e}}{8E_{\mathrm{er}}\mu_{e}^{2}} \sum_{n,l} \int_{q_{\mathrm{min}}}^{q_{\mathrm{max}}} q \mathrm{d}q |f_{n,l\to E_{r}}(q)|^{2} \int_{v>v_{\mathrm{min}}} \mathrm{d}^{3}v \frac{f^{*}(\mathbf{v})}{v}$$

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{er}}} = \frac{\rho}{m_{\chi}} \frac{\sigma_{e}}{8E_{\mathrm{er}}\mu_{e}^{2}} \sum_{n,l} \int_{q_{\mathrm{min}}}^{q_{\mathrm{max}}} q \mathrm{d}q |f_{n,l\to E_{r}}(q)|^{2} \int_{v>v_{\mathrm{min}}} \mathrm{d}^{3}v \frac{f^{*}(\mathbf{v})}{v}$$

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

Page 5

n function for E_r =2keV and m_v =5GeV

Production mechanism: Terrestrial upscattering

Production mechanism: Terrestrial upscattering

Original speed distributions (rescaled)

$$\sigma_{\rm eff} \equiv \sqrt{\sigma_p \sigma_e}$$

$$\sigma_{\rm eff} \equiv \sqrt{\sigma_p \sigma_e}$$

Conclusions

Calculate density and speed distribution of excited state (MC confirmed)

Formalism fits XENON1T in allowed parameter region

Interesting modulation signature

Thank you!

jonas.frerick@desy.de

Electron scattering in nuclear recoil searches

- Essig et al. realized that classical searches for nuclear recoils can also be sensitive to DM-electron scattering [1108.5383,1206.2644,1509.01598]
- Advantage: Sensitivity to much lighter DM candidates (sub-GeV)

 Disadvantage: Requires input from atomic physics to account for the bound electrons

$$|f_{n,l\to E_{\rm er}}(q)|^2 = \frac{4k'^3}{(2\pi)^3} \sum_{l'=0}^{\infty} \sum_{m=-l}^{l} \sum_{m'=-l'}^{l'} |f_{1\to 2}(q)|^2$$

$$f_{1\to 2}(\mathbf{q}) = \int d^3x \; \psi_{k'\ell'm'}^*(\mathbf{x}) e^{i\mathbf{x}\cdot\mathbf{q}} \psi_{n\ell m}(\mathbf{x})$$

Dark Matter Mass [MeV]

Page 12

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{er}}} = \frac{\rho}{m_{\chi}} \frac{\sigma_{e}}{8E_{\mathrm{er}}\mu_{e}^{2}} \sum_{n,l} \int_{q_{\mathrm{min}}}^{q_{\mathrm{max}}} q \mathrm{d}q |f_{n,l\to E_{r}}(q)|^{2} \int_{v>v_{\mathrm{min}}} \mathrm{d}^{3}v \frac{f^{*}(\mathbf{v})}{v}$$

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{er}}} = \frac{\rho}{m_{\chi}} \frac{\sigma_{e}}{8E_{\mathrm{er}}\mu_{e}^{2}} \sum_{n,l} \int_{q_{\mathrm{min}}}^{q_{\mathrm{max}}} q \mathrm{d}q |f_{n,l\to E_{r}}(q)|^{2} \int_{v>v_{\mathrm{min}}} \mathrm{d}^{3}v \frac{f^{*}(\mathbf{v})}{v}$$

Essig et al. showed that standard (elastic) DM-electron scattering fails to reproduce the XENON1T excess [2006.14521]

Why is that?

DESY.

n function for E_r =2keV and m_v =5GeV

Page 15

How (not)

Essig et al. showe reproduce the XEI

Why is that?

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{er}}} = \frac{\rho}{m_{\chi}}$$

DESY.

Inelastic DM works... So what next?

But where does the excited state come from?

Cosmological origins [2006.13918,2108.13422]

Cosmic ray upscattering [2008.12137]

Solar upscattering [2006.13918(?),2202.13339(?)]

Terrestrial upscattering [1904.09994 (luminous DM only)]

Our work:

Generalise to luminous AND exothermic DM

What's the plan?

Kavanagh et al. implemented a formalism to calculate the perturbation of the

speed distribution of elastic DM [1611.05453]

We will now generalize their mechanism. What do we need?

- Initial velocity distribution: Standard Halo Model
- Model of the atomic density of Earth
 √ (improved)
- Detailed analysis of the kinematics \times (start from scratch)
- Take into account the detector position (daily modulations) √
- Use our previous results for electron scattering

AND: confirm analytical approach with Monte Carlo simulation

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

$$f^*(v) = \sum_{\pm,i} \int_0^1 \mathrm{d}\cos\theta \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta' \times \frac{\sigma_i \bar{n}_i d_{\mathrm{eff},i}(\cos\theta)}{2\pi} \left| \frac{\mathrm{d}\kappa_{\pm,i}^{-1}(v',\alpha)}{\mathrm{d}v'} \right|^{-1} \times \frac{v'^3}{v} f_0(v',\cos\theta') P_{\pm,i}(\cos\alpha) \right|_{v'=\kappa_i(v,\alpha)}$$

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

$$f^*(v) = \sum_{\pm,i} \int_0^1 \mathrm{d}\cos\theta \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta' \times \frac{\sigma_i \bar{n}_i d_{\mathrm{eff},i}(\cos\theta)}{2\pi} \left| \frac{\mathrm{d}\kappa_{\pm,i}^{-1}(v',\alpha)}{\mathrm{d}v'} \right|^{-1} \times \frac{v'^3}{v} f_0(v',\cos\theta') P_{\pm,i}(\cos\alpha) \Big|_{v'=\kappa_i(v,\alpha)}$$

Speed distribution of the excited state

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

$$f^*(v) = \sum_{\pm,i} \int_0^1 \mathrm{d}\cos\theta \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta' \times \frac{\sigma_i \bar{n}_i d_{\mathrm{eff},i}(\cos\theta)}{2\pi} \left| \frac{\mathrm{d}\kappa_{\pm,i}^{-1}(v',\alpha)}{\mathrm{d}v'} \right|^{-1} \times \frac{v'^3}{v} f_0(v',\cos\theta') P_{\pm,i}(\cos\alpha) \Big|_{v'=\kappa_i(v,\alpha)}$$

Element	O	Si	Mg	Fe	Ca	Na	S	Al	Ni	total
Mass in GeV	14.9	26.1	22.3	52.1	37.2	21.4	29.8	25.1	58.7	
Relative abundance mantle	0.4400	0.2100	0.2280	0.0626	0.0253	0.0027	0.0003	0.0235	0	0.9924
Relative abundance core	0	0.060	0	0.855	0	0	0.019	0	0.052	0.986

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

$$f^*(v) = \sum_{\pm,i} \int_0^1 \mathrm{d}\cos\theta \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta' \times \frac{\sigma_i \bar{n}_i d_{\mathrm{eff},i}(\cos\theta)}{2\pi} \left| \frac{\mathrm{d}\kappa_{\pm,i}^{-1}(v',\alpha)}{\mathrm{d}v'} \right|^{-1} \times \frac{v'^3}{v} f_0(v',\cos\theta') P_{\pm,i}(\cos\alpha) \Big|_{v'=\kappa_i(v,\alpha)}$$

Scattering on terrestrial nuclei and decays

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

$$f^*(v) = \sum_{\pm,i} \int_0^1 \mathrm{d}\cos\theta \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta' \times \frac{\sigma_i \bar{n}_i d_{\mathrm{eff},i}(\cos\theta)}{2\pi} \left| \frac{\mathrm{d}\kappa_{\pm,i}^{-1}(v',\alpha)}{\mathrm{d}v'} \right|^{-1} \times \frac{v'^3}{v} f_0(v',\cos\theta') P_{\pm,i}(\cos\alpha) \Big|_{v'=\kappa_i(v,\alpha)}$$

Standard Halo Model

Conceptually easy approach [1611.05453]:

Equate the outgoing and incoming fluxes for a scattering point and integrate over the whole volume of Earth.

The excited speed distribution

Varying the mass splitting

Varying the decay time

Varying the DM mass

What do we know about the effective cross section?

Idea for luminous DM: monochromatic line with total rate

$$R = \frac{\rho^* V_{\text{det}}}{\tau m_{\chi}}$$

Preference for small DM mass and large life times

Time modulation: The special signature of our mechanism

Remember: speed distribution depends on orientation between DM wind and the detector's position on Earth

Direct detection constraints

Additional constraints and problems

- Observable x-ray line from DM-DM (model-dependent!) and DM-SM upscattering in DM halos
- Solar upscattering (electrons non-negligible?)
- Cross section hierarchy due to the strong constraints from classical WIMP searches

$$\frac{\sigma_e}{\sigma_p} = \frac{\mu_e^2}{\mu_p^2} \approx \frac{m_e^2}{m_p^2} < 10^{-6}$$

⇒ model building challenge & strong preference for smaller DM masses

- Modulation for small masses (~10%) is rather weak (20 times the XENON1T statistics required for 3σ)
- Single scattering approximation and local nuclear densities

The excited fraction

Details on the MC

$$\mathbf{v} = \frac{\sqrt{m_a^2 v'^2 - \frac{2\delta}{m_\chi} m_a (m_a + m_\chi)} \mathbf{n} + m_\chi \mathbf{v}'}{m_a + m_\chi}$$

More on the kinematics

$$\kappa_{\pm}^{-1}(v',\alpha) = v' \frac{\cos \alpha \pm \sqrt{\frac{m_N^2}{m_\chi^2} - \sin^2 \alpha - \frac{2\delta m_N(m_N + m_\chi)}{m_\chi^3 v'^2}}}{1 + m_N/m_\chi}$$

$$\kappa_{\pm}(v,\alpha) = v \frac{\cos \alpha \mp \sqrt{\frac{m_N^2}{m_\chi^2} - \sin^2 \alpha + \frac{2\delta m_N(m_N - m_\chi)}{m_\chi^3 v^2}}}{1 - m_N/m_\chi}$$

$\cos \alpha$	κ'	κ	condition	explanation
> 0	-	-	no solution as $\kappa < 0$	1
< 0	-	-	no solution as $\kappa' < 0$	2
> 0	+	-	no solution as $\kappa < 0$	3
< 0	+	ı	no solution as $m_{\chi}^2 \ngeq m_A^2 + \frac{2\delta m_A(m_A - m_{\chi})}{m_{\chi}}$	4
> 0	-	+	solution if $v' \leq \sqrt{\frac{2\delta m_A}{m_\chi(m_A - m_\chi)}}$	5
< 0	-	+	no solution as $\kappa' < 0$	6
> 0	+	+	unconditional existence of solution	7
< 0	+	+	solution if $v' \ge \sqrt{\frac{2\delta m_A}{m_\chi(m_A - m_\chi)}}$	8

