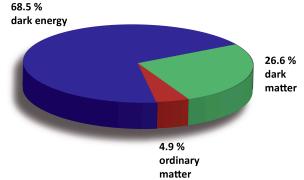


Laboratory limits on the annihilation or decay of dark matter particles

Tim Wolf Max-Planck-Institut für Kernphysik <u>tim.wolf@mpi-hd.mpg.de</u>


based on: arXiv:2107.05685

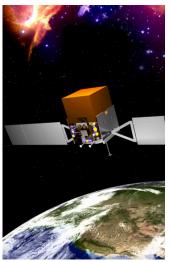
Why Dark Matter?

• Many different evidence for the existence of Dark Matter (DM)

- Λ CDM describes all observations well
- Well motivated theory approach:
 Weakly Interacting Massive Particles
 →WIMPs

Nature of Dark Matter remains unknown!

Tim Wolf (MPIK) - 18th of July 2022


Indirect detection

 Annihilation of DM might occur at the center of our galaxy sending out detectable signatures into the universe

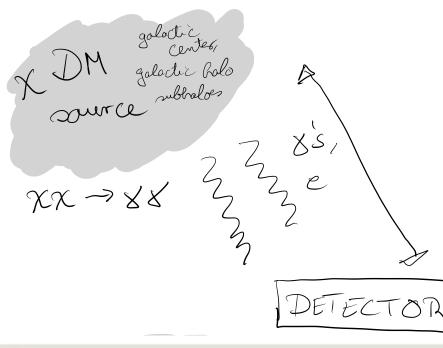
•
$$\chi\chi \to e^+e^-, \chi\chi \to \gamma\gamma$$

$$\frac{d\Phi_p}{dE} = \frac{\langle \sigma v \rangle}{4\pi 2m_{\chi}^2} \cdot \frac{dN_p}{dE} \cdot J(\Delta \Omega) \qquad \qquad J(\Delta \Omega) = \int d\Omega \int \rho^2(\ell) d\ell$$

- DM annihilation typically targeted by:
 - satellites or balloons sensitive to charged particles, γ s
 - Cherenkov telescopes and large neutrino observatories

Direct Detection of DM

- Typically looking for DM interaction with *nuclei* and *electrons* of target material
- two phase time projection chambers are among the most sensitives (LZ, XENON, PandaX, Darkside, ArDM, ...)
- Key point:
 - sensitive to energy depositions between a few keV to a few MeV
 - energy spectrum allows so carry out searches

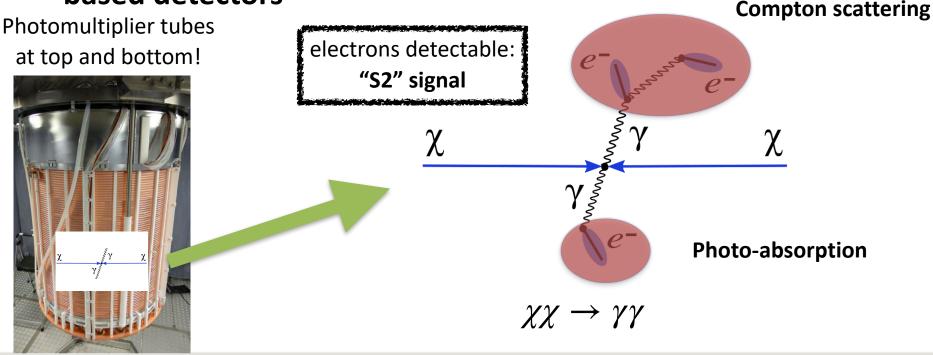


classical indirect search for DM:

classical indirect search for DM:

X DM goloctic goloctic goloctic source subbol XX -> XX	26, Golo Joes XXX	X's, e	
		DETEC	TO

new idea to search for annihilation products inside earth based detectors:



 Study of sensitivity to annihilation taking place inside earth based detectors
 Not detectable

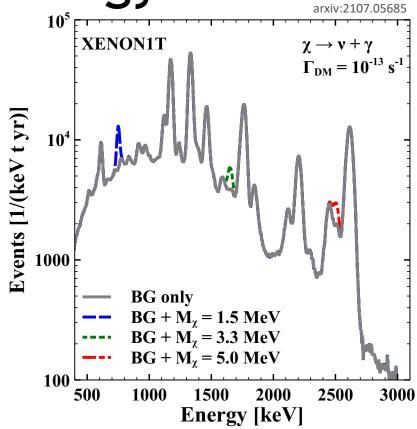
Photomultiplier tubes by photo-sensors at top and bottom! χ χ $\chi \chi \to \gamma \gamma$

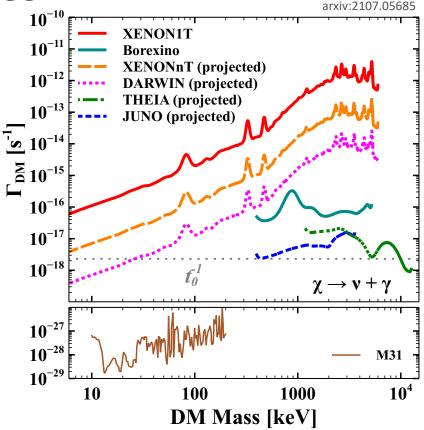
 Study of sensitivity to annihilation taking place inside earth based detectors

Annihilation rate:
$$\mathcal{R} = \frac{\langle \sigma v \rangle}{2} n_{\rm DM}^2 = \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \rho_{0,\rm DM}^2$$

<u>Signature</u>: peak at $2m_{\gamma}$

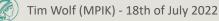
- No dependence:
 - J-factors
 - SM processes in complex objects do not matter
- Considered volume much smaller: detector vs. center of galaxy...


New perspective on laboratory experiments $\mathcal{R} = rac{\langle \sigma v
angle}{2} n_{
m DM}^2 = rac{\langle \sigma v
angle}{2m_{
m C}^2}
ho_{0,
m DM}^2$ Annihilation rate: Argument also applies for DM decay <u>Signature</u>: peak at $2m_{\gamma}$ No dependence: $\mathcal{R} = \Gamma_{\rm DM} \, n_{\rm DM} = \frac{\Gamma_{\rm DM}}{m_{\gamma}} \, \rho_{0,\rm DM}$ J-factors SM processes in complex objects do $\chi \rightarrow \gamma \gamma, \chi \rightarrow e^+ e^-, \chi \rightarrow \nu \gamma$ not matter Considered volume much smaller: peak at $\frac{1}{2}m_{\chi}$ detector vs. center of galaxy...


Analysis strategy

- look at high energy spectra of electronic recoil energy depositions
- observed rate at a given energy allows to constrain annihilation cross-section / decay rate respectively

Results


- Considering liquid xenon TPCs (XENON1T) but also organic scintillators (Borexino) and planned experiments
- Limits from M31 10 to 12 orders of magnitude better —> larger annihilation volume

Summary

- Novel idea to use earth based detectors to constrain:
 - DM annihilation rate $\longrightarrow \langle \sigma v \rangle$ - DM decay rate $\longrightarrow \Gamma_{DM}$
- Limits are not competitive with astronomical experiments
- Complementary probe of DM properties
- Analysis which should be rather straightforward to perform once calibration up to higher energies is successful
- Bigger detectors as planned by <u>XLZD</u> will provide better limits

11