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The Neutrino Floor and Direct Detection

e As direct detection experiments get
more sensitive, they will start to
observe solar neutrinos.

e This signal is very similar to dark
matter signal, makes up an irreducible
background known as the neutrino
floor or fog.

e Work on annual modulation and
directional detection needed to move
past this.
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Direct detection as a neutrino detector

e For dark matter physics, v signal is a
pesky background. v v

e In our work, we try to determine what
can be learnt about neutrino physics
from direct dark matter detection
experiments.

e In arXiv:2104.03297 we do this in
the context of a specific model.

e Currently finalising a more general
study with Non-Standard neutrino
Interactions (NSI's).
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Direct detection testing a solution to (g —2),

e The measurement of the anomalous
magnetic moment of the muon is in

tension with the Standard Model )
theoretical expectaction.
e A simple solution is to invoke the
existence of new light gauge boson, A’
I A 0

e We note that only the u — A’
interaction contributes.
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An anomaly free solution requires 7 interactions

e In order to cancel anomalies in the gauge theory, one needs additional interactions
to the p — A'.

e The U(1),, -, interaction is a viable solution and evades existing constraints.
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Muon fixed targets and U(1),,_,

e Muon fixed target experiments like M3
and NA64 . will be able to probe
U(1)L, -1, by searching for invisible
decays.

e Only a test of muon interaction.
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Spallation sources and U(1),, ;.

e Measuring coherent neutrino-nucleus
scattering (CEvNS) at spallation
sources allows one to measure the

kinetic mixing parameter e.
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e Also makes neutrino and DM-coupled
mediator models distinguishable.
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Direct detection would measure the v, interactions

e The flux of v;'s from the sun will provide an important differentiator between
direct detection and CEvNS.
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Confirmation of the U(1),,_,
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e Direct detection could provide s
confirmation of the U(1)., ¢,
solution to (g — 2),.

e The lighter my solutions would be
observed in DARWIN for example.

e There is a high degree of E
complementarity across the searches.
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Non Standard Neutrino Interactions and Direct Detection
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Direct Detection and General Non-Standard Neutrino Interactions

e A general way to parameterize neutrino interactions beyond the Standard Model is
by using an effective description

Lns = —2V2 Gr Z 52% [Ty PLyg] [f’prf]
f=e,u,d
a,f=e,u,T

e Consider only f = e, u, d because we consider neutrino interactions with matter.
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Current NSI parameterisation

e When using osciIIation experiments to

d
constraln the & ﬁ one often assumes o where ep 5 =2¢5 + g5 and
—0. £65 = cap + 2505
e This is because oscillations through e This has the benefit of leaving the gy
neutral matter are effected by the sum unchanged. .
of charged interactions o Can reparameterise c; = €ap &
with
P_
(55 +€05) + Yalx) el & = /B s
¢" =5 siny
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Extended NSI Parameterisation

e Because direct detection experiments
will simultaneously be able to probe
nuclear and recoil scatterings, we
propose an extension of the NSI
parameterisation. L Y RN

€€ = /5 cosn sing,
&P = /5 cosn cos g,
¢"=+/5siny.
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Calculating the recoil rate from solar neutrinos

A modification is required in the rate calculation

e For flavour diagonal neutrino interactions

dR deby, do
_:nTZ/ ¢ P(Veﬁya)EdEl/7

e In general, (e4p # 0 when a # f3)

dR dd, do
A Tr | p—Z | 4E,
dEr T /E;m dE, [pdER}
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Projections for Nuclear recoils

e Here we show ¢ = 0, i.e. completely in the proton-neutron plane.
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Direct Detection will have Electronic and Nuclear Recoils

e When ¢ # 0 electronic and nuclear recoils will be observable at direct detection
experiments.
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Conclusions

e Direct detection experiments will soon be probing the solar neutrino background.
e There are interesting new physics studies that can be done with this signal.

e We show that for the U(1)., ., solution to (g —2),, direct detection will provide
important information.

o Current work is ongoing for calculating the projections for direct detection with
non-standard neutrino interactions.

o Keep an eye on the arXiv!
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