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The Neutrino Floor and Direct Detection

• As direct detection experiments get

more sensitive, they will start to

observe solar neutrinos.

• This signal is very similar to dark

matter signal, makes up an irreducible

background known as the neutrino

floor or fog.

• Work on annual modulation and

directional detection needed to move

past this.
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Direct detection as a neutrino detector

• For dark matter physics, ν signal is a

pesky background.

• In our work, we try to determine what

can be learnt about neutrino physics

from direct dark matter detection

experiments.

• In arXiv:2104.03297 we do this in

the context of a specific model.

• Currently finalising a more general

study with Non-Standard neutrino

Interactions (NSI’s).
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Direct detection testing a solution to (g − 2)µ

• The measurement of the anomalous

magnetic moment of the muon is in

tension with the Standard Model

theoretical expectaction.

• A simple solution is to invoke the

existence of new light gauge boson, A′.

• We note that only the µ− A′

interaction contributes.

µ µA′

A
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An anomaly free solution requires τ interactions

• In order to cancel anomalies in the gauge theory, one needs additional interactions

to the µ− A′.

• The U(1)Lµ−Lτ interaction is a viable solution and evades existing constraints.
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Muon fixed targets and U(1)Lµ−Lτ

• Muon fixed target experiments like M3

and NA64µ will be able to probe

U(1)Lµ−Lτ by searching for invisible

decays.

• Only a test of muon interaction.
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Spallation sources and U(1)Lµ−Lτ

• Measuring coherent neutrino-nucleus

scattering (CEνNS) at spallation

sources allows one to measure the

kinetic mixing parameter ε.

εµτ ≈
e gµτ
6π2

log

(
mµ

mτ

)
≈ −gµτ

70

• Also makes neutrino and DM-coupled

mediator models distinguishable.
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Direct detection would measure the ντ interactions

• The flux of ντ ’s from the sun will provide an important differentiator between

direct detection and CEνNS.
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Confirmation of the U(1)Lµ−Lτ

• Direct detection could provide

confirmation of the U(1)Lµ−Lτ
solution to (g − 2)µ.

• The lighter mA′ solutions would be

observed in DARWIN for example.

• There is a high degree of

complementarity across the searches.
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Non Standard Neutrino Interactions and Direct Detection
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Direct Detection and General Non-Standard Neutrino Interactions

• A general way to parameterize neutrino interactions beyond the Standard Model is

by using an effective description

LNSI = −2
√

2GF

∑
f=e,u,d
α,β=e,µ,τ

εfPαβ [ν̄αγρPLνβ]
[
f̄ γρPf

]

• Consider only f = e, u, d because we consider neutrino interactions with matter.
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Current NSI parameterisation

• When using oscillation experiments to

constrain the εfPαβ one often assumes

εePαβ = 0.

• This is because oscillations through

neutral matter are effected by the sum

of charged interactions

(εeαβ + εpαβ) + Yn(x) εnαβ

• where εpαβ = 2 εuαβ + εdαβ and

εnαβ = εuαβ + 2 εdαβ.

• This has the benefit of leaving the σνe

unchanged.

• Can reparameterise εfPαβ = εη,ϕαβ ξ
fP

with

ξp =
√

5 cos η ,

ξn =
√

5 sin η

11 / 16



Extended NSI Parameterisation

• Because direct detection experiments

will simultaneously be able to probe

nuclear and recoil scatterings, we

propose an extension of the NSI

parameterisation.

ξe =
√

5 cos η sinϕ ,

ξp =
√

5 cos η cosϕ ,

ξn =
√

5 sin η .

εe

εp

εn
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η
ϕ
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Calculating the recoil rate from solar neutrinos

A modification is required in the rate calculation

• For flavour diagonal neutrino interactions

dR

dER
= nT

∑
να

∫
Emin
ν

dφνe
dEν

P(νe → να)
dσ

dER
dEν ,

• In general, (εαβ 6= 0 when α 6= β)

dR

dER
= nT

∫
Emin
ν

dφν
dEν

Tr

[
ρ
dσ

dER

]
dEν
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Projections for Nuclear recoils

• Here we show φ = 0, i.e. completely in the proton-neutron plane.
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Direct Detection will have Electronic and Nuclear Recoils

• When φ 6= 0 electronic and nuclear recoils will be observable at direct detection

experiments.
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Conclusions

• Direct detection experiments will soon be probing the solar neutrino background.

• There are interesting new physics studies that can be done with this signal.

• We show that for the U(1)Lµ−Lτ solution to (g − 2)µ, direct detection will provide

important information.

• Current work is ongoing for calculating the projections for direct detection with

non-standard neutrino interactions.

• Keep an eye on the arXiv!
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