The low-energy spectrum in DAMIC at SNOLAB

Alvaro E. Chavarria University of Washington

- Charge-coupled devices (CCDs).
- CCD detector response.
- DAMIC at SNOLAB.
- Data reconstruction.
- Background model.
- WIMP search results / low-energy excess.
- DAMIC upgrade with skipper CCDs.

2

easy cryogenics (~100 K).

Sample CCD image (~15 min exposure) segment in the surface lab.

Cosmic muon

CU

7

Point-like

 β particle

Zoom

. .

15 • 20 10 25 5 Energy measured by pixel [keV]

Detector response

- CCD energy scale calibrated with X rays and photons down to 40 eV_{ee}.
- Diffusion model calibrated with cosmic muons on the surface.
- Validated with X-ray cluster reconstruction.

Mn K_{α} from front and back

Cosmic muon:

Nuclear recoil response

- Detector response calibrated with 24 keV neutrons from ⁹Be(γ,n) reaction.
- predicted by Lindhard model.

By comparing data and Monte Carlo spectra, ionization efficiency was measured to be lower than

Nuclear recoil response

- Detector response calibrated with 24 keV neutrons from ⁹Be(γ,n) reaction.
- predicted by Lindhard model.
- Also validates diffusion model at low energies.

By comparing data and Monte Carlo spectra, ionization efficiency was measured to be lower than

CCD Box

Cryostat insert

DANIC at SNOLAB

In shield

External shield

- Located at SNOLAB (6000 m.w.e. overburden).
- 7 CCDs (6.0 g, 16 Mpix) cooled to 140 K.
- Passive shielding: 20 cm of lead (inner 5 cm ancient) and 40 cm of polyethylene.
- Total background rate: ~10 d.r.u.
- Low pixel noise <2 e⁻.
- Extremely low leakage current 2 x 10⁻²² A cm⁻².

DANIC at SNOLAB

Copper trays (EF for CCD1)

Kapton signal flex

DM-e-interactions:

- First DM search results from ~eV ionization signals.
- Latest DM-e- scattering results.

Results summary

• WIMP search:

PRL125(2020)241803

PRD105(2022)062003

- 11 kg-day of data from seven-CCD array.
- ► 50 eV_{ee} analysis threshold.
- First full background model in CCDs.

Data recon

- Mask "hot" regions of the CCD which contain higher dark current (remove ~16% mass) or high-E depositions.
- Scan over the image and perform a likelihood ratio test of Gaussian vs. flat to find event clusters.
- Best-fit Gaussian parameters provide cluster variables (E, σ_{xy} , x, y).
- We select a statistical significant for a Gaussian cluster over noise such that <0.1 noise events in our data.

Data recon

- Mask "hot" regions of the CCD which contain higher dark current (remove ~16% mass) or high-E depositions.
- Scan over the image and perform a likelihood ratio test of Gaussian vs. flat to find event clusters.
- Best-fit Gaussian parameters provide cluster variables (E, σ_{xy} , x, y).
- We select a statistical significant for a Gaussian cluster over noise such that <0.1 noise events in our data.

12

Background model

- Simulate radioactive decays everywhere inside the detector and track the resulting particles (GEANT4).
- Apply the detector response model to all energy depositions.
- Simulate data reconstruction and selection.
- Perform a fit in (*E*, σ_{xy}) to clusters with *E* > 6 keV_{ee} for a bestfit background model.

Constraints and cross-checks to background model from:

- Extensive radioactive materials assay program.
- Coincidence analysis of decays in bulk silicon. JINST16(2021)P06019
- Independent beam measurement of cosmogenic activation.
- PRD105(2022)062003

PRD102(2020)102006

- **Top:** Fit in (E, σ_{xy}) to clusters with E > 6 keV_{ee} to data from CCDs 2-7.
- **Bottom:** Best-fit result compared to data from CCD 1.
- Main background components: ²¹⁰Pb (surface, bulk Cu), ³H in silicon.
- Extrapolate to low energies for WIMP search.

Background model

Partial charge collection

- ²¹⁰Pb-Bi) on the backside.
- backside background components.

Dominant systematic uncertainty is the response of the CCD to decays (e.g.,

Simulated CCD backside response and parametrized spectral distortion of

WIMP search fit result

- Excess of 17.1 \pm 7.6 events with decay ε = 67 \pm 37 eV_{ee}.
- Fit prefers signal + background over background-only with **p value** 2.2 x 10⁻⁴.

• Unbinned likelihood fit with background model + PCC correction + generic exponential signal.

Systematic checks:

- No statistically significant features in the spectrum besides the low energy excess.
- No known background or detector response hypothesis to explain the excess.

• Events really look like they are in the bulk. Unable to reproduce excess with surface pop.

• Known unknowns: unidentified noise source? imperfect surface background response model?

- and tested at UW. Installed in Oct-Nov 2021.
- (2.4 x 10⁻³ e⁻/pix/day).

SNOLAB Upgrade

- Two 24 Mpix DAMIC-M skipper CCDs (18 g Si target) packaged and tested at UW. Installed in Oct-Nov 2021.
- New science run started in early March 2022.
- Reproduce background rate from before: 9 ± 1 d.r.u. total and 6 ± 2 d.r.u. bulk.

- Simulated data set with measured detector performance.
- ► Threshold decreased from 50 eV_{ee} to 15 eV_{ee} (4 e-).
- If exponential excess present, should observe with high significance in <1 year.</p>

Upgrade sensitivity

• Performed event clustering, reconstruction and selection with methodology from previous analysis.

- DAMIC pioneered the use of low-noise CCDs to search for dark matter.
- Extensive detector characterization and calibration.
- DAMIC at SNOLAB—first CCD array underground—delivered competitive science results.
- We developed the first complete background model for a CCD dark matter search.
- Performed most sensitivity search for low-mass WIMPs with a silicon target.
- WIMP search revealed a puzzling excess of events.
- Upgraded DAMIC with skipper CCDs to understand origin of excess.

Conclusions

DAMIC Collaboration

