Axion-like particles as Cold Dark Matter by the misalignment mechanism with the PQ symmetry unbroken during inflation

Paweł Kozów[†]

[†]IFT, Faculty of Physics, University of Warsaw

work in progress, in collaboration with prof. Marek Olechowski †

IDM 2022, Vienna

19.07.2022

The QCD Axion $(a/f_a \equiv \theta)$:

$$V(\theta) = m_a^2 f_a^2 \left(1 - \cos \theta\right), \qquad m_a \simeq 6 \,\mathrm{eV}\left(rac{10^6 \,\mathrm{GeV}}{f_a}
ight), \qquad T \lesssim 1 \mathrm{GeV}$$

Axion-Like Particle (ALP):

 $V(heta)
ightarrow U(heta' \equiv \phi/f_{\phi}) \propto \Lambda_{\phi}^4, \qquad m_{\phi} \sim \Lambda_{\phi}^2/f_{\phi} \qquad +1 ext{ free parameter}$

The Misalignment Mechanism: (homogeneous) initial $\theta_i \neq 0$

 $\ddot{a} + 3H\dot{a} + V'(a) = 0 \quad \Rightarrow \text{Axion starts oscillating at } m \sim 3H \qquad (T_{osc}^{QCD} > 1 \text{GeV})$

$$V \approx \frac{1}{2}m^2a^2 \Rightarrow a(t) = A(t)\cos(m_a t + \theta_i) \text{ AND } \rho_a \sim A^2 \sim \mathcal{R}^{-3}$$

Axion/ALP condensate \equiv Cold Dark Matter candidate

review in [1510.07633, D. J. E. Marsh]

QCD Axion as CDM:

$$\begin{split} \Omega_a h^2 \sim 2 \times 10^4 \left(\frac{f_a}{10^{16} \text{ GeV}}\right)^{7/6} \times \theta_i^2 \\ \Omega_a h^2 &= \Omega_{CDM} h^2 = 0.12 \ \Rightarrow \ f_a \simeq 10^{11} \text{ GeV} \qquad (\text{for } \theta_i \simeq 1) \\ \\ \underline{\text{ALP as CDM:}} \\ \Omega_\phi &= \frac{1}{6} (9\Omega_r)^{3/4} \left(\frac{m_\phi}{H_0}\right)^{1/2} \left(\frac{\phi_i}{M_{pl}}\right)^2 \end{split}$$

e.g.:

$$m_{\phi} = 10^{-12} \text{eV}, \dots, 10^{-24} \text{eV} \Rightarrow \phi_i = 10^{14.5} \text{GeV}, \dots, 10^{17.5} \text{GeV}$$

What is the origin of θ_i ? go back to inflationary dynamics of Φ_{PQ}

 $V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$

<u>**1.**</u> $f_a \gg H_I$ ("PQ broken scenario") thermal mass due to $T_{GH} = \frac{H_I}{2\pi}$ does NOT restore $U(1)_{PQ}$

 Φ_{PQ} quickly attains its vacuum[†] $|\Phi_{PQ}| = f_a \Rightarrow$ uniform (random) θ_i in our Universe [†][Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart]

axion is massless $m_a(T) \to 0$, but light (or massless) fields fluctuate quantum fluctuations of each mode k that leaves the horizon ($k \leq H$) "freezes"

 \Rightarrow random "kicks" to field a averaged over Hubble volumes ("stochastic fluctuations") $_{4/38}$

 $\delta\theta$ grow around θ_i :

$$\langle \delta \theta^2(x)
angle = rac{H_I^2}{4\pi^2 f_a^2} imes \Delta N_e \qquad a \equiv f_a heta$$

the larger f_a the slower $\delta\theta$ dynamics

misalignment $\Rightarrow \delta a \equiv$ isocurvature fluctuations of CDM

strong constraints on the CDM isocurvature power

for the QCD Axion:

$$\Rightarrow H_I < 10^7 \text{GeV}$$
 $(heta_i \simeq 1, f_a \simeq 10^{11} \text{GeV})$

for an ALP:

$$\Rightarrow H_I \lesssim 10^{10} {
m GeV}$$
 $(f_{\phi} < 10^{17.5} {
m GeV})$

allowed $H_I \ll 10^{14} \text{GeV}...$

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$$

2. $f_a \ll H_I$ ("PQ unbroken scenario") thermal mass due to $T_{GH} = \frac{H_I}{2\pi}$ restores $U(1)_{PQ}$ during inflation

The traditional approach: [review in 1510.07633, D. J. E. Marsh]

- Φ_{PQ} attains 0 (false vacuum) during inflation (NO stochastic fluctuations)
- $U(1)_{PQ}$ is broken later, when $T \sim T_C$

For $T \leq T_C$: $\delta \theta \sim O(1) \rightarrow$ "white noice" isocurvature power[†] [†][1903.06194, M. Feix, J. Frank, A. Pargner, R. Reischke, B.M. Schäfer, T. Schwetz]

 \Rightarrow the "classical Axion window" for misalignment open:

$$f_a \simeq 10^{11} {
m GeV}, \ H_I = 10^{12} {
m GeV}, \dots, 10^{14} {
m GeV}, \qquad \langle \theta^2 \rangle = \pi^2/3$$

strings are formed (disastrous for $\mathcal{C} = N_{DW} > 1$) $+\Omega_a$

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$$

<u>2.</u> $f_a \ll H_I$ ("PQ unbroken scenario") thermal mass due to $T_{GH} = \frac{H_I}{2\pi}$ restores $U(1)_{PQ}$ during inflation

but Φ_{PQ} is light at false vacuum[†]: $V_{PQ}''(0) = \alpha H_I^2/48\pi^2 \ll H_I^2 \rightarrow \delta \Phi_{PQ}$ emerge [†][hep-ph/0606107, M. Beltrán, J. García-Bellido, J. Lesgourgues]

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$$

2. $f_a \ll H_I$ ("PQ unbroken scenario") thermal mass due to $T_{GH} = \frac{H_I}{2\pi}$ restores $U(1)_{PQ}$ during inflation

but Φ_{PQ} is light at false vacuum[†]: $V_{PQ}''(0) = \alpha H_I^2/48\pi^2 \ll H_I^2 \rightarrow \delta \Phi_{PQ}$ emerge [†][hep-ph/0606107, M. Beltrán, J. García-Bellido, J. Lesgourgues]

"The stochastic approach": [A. A. Starobinsky (and J. Yokoyama), 82', 85' (, 94')] apply "the Langevin equation" to describe evolution of a field $\chi(t, \bar{x})$ coarse-grained over H_I volume ($\bar{x} \in \bar{x}_1, \bar{x}_2, \ldots$), at each \bar{x}_i accounting for:

- the random quantum "kicks" (uncorrelated in \bar{x})
- the classical evolution (towards the minimum)

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$$

2. $f_a \ll H_I$ ("PQ unbroken scenario") thermal mass due to $T_{GH} = \frac{H_I}{2\pi}$ restores $U(1)_{PQ}$ during inflation

but Φ_{PQ} is light at false vacuum[†]: $V_{PQ}''(0) = \alpha H_I^2/48\pi^2 \ll H_I^2 \rightarrow \delta \Phi_{PQ}$ emerge [†][hep-ph/0606107, M. Beltrán, J. García-Bellido, J. Lesgourgues]

"The stochastic approach": [A. A. Starobinsky (and J. Yokoyama), 82', 85' (, 94')] apply "the Langevin equation" to describe evolution of a field $\chi(t, \bar{x})$ coarse-grained over H_I volume ($\bar{x} \in \bar{x}_1, \bar{x}_2, \ldots$), at each \bar{x}_i accounting for:

- the random quantum "kicks" (uncorrelated in \bar{x})
- the classical evolution (towards the minimum)

 \rightarrow probability distribution $P(t, \chi)$ (satisfies "the Fokker-Planck equation"):

(probability of finding χ in $d^n\chi$) = $P(t, \chi) d^n\chi$

 \Rightarrow the stationary solution: $P(\chi) \propto \exp\left(-rac{8\pi^2}{3H_l^4}V(\chi)
ight)$

9/38

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}$$

<u>2.</u> $f_a \ll H_l$ ("PQ unbroken scenario")

 $P(t, \Phi_{PQ})$ approaches $P(\Phi_{PQ})$ after¹ $\Delta N \simeq 15. \times \left(\frac{1}{\lambda}\right)^{1/2}$ e-folds $\lambda \gtrsim 0.05 \Rightarrow \Delta N < 60$

 $P(\Phi_{PQ})$ reflects $U(1)_{PQ} \Rightarrow \langle \delta \theta^2 \rangle \simeq \pi^2/3$ AND strings are formed¹

even if $T_{RH} < f_a$, the traditional approach to "PQ unbroken scenario" could still lead to correct results for $\lambda \gtrsim 0.05$ but not for $\lambda \lesssim 0.05$

¹[Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart]

$$V_{PQ} = \lambda \left(\Phi_{PQ}^{\dagger} \Phi_{PQ} - \frac{1}{2} f_a^2 \right)^2 + \frac{\alpha}{24} T_{GH}^2 \Phi_{PQ}^{\dagger} \Phi_{PQ}, \qquad \Phi_{PQ} = \frac{1}{\sqrt{2}} S e^{i\theta}$$

<u>2.</u> $f_a \ll H_I$ ("PQ unbroken scenario")

 $\lambda \ll 0.01 \rightarrow$ assume long enough inflation: $P(\Phi_{PQ})$ achieved before last 60 e-folds

typical initial value S_i is predicted by $P(\Phi_{PQ}) \propto \exp\left(-\frac{8\pi^2}{3H_l^4}V(S)\right)$, e.g.:

$$S_i\simeq 0.3 imes rac{H_l}{\lambda^{1/4}}$$

sometimes very large S_i is necessary and in the corresponding analyses $\lambda \sim 10^{-20}$ are explicitly considered, e.g.:

- "Kinetic Misalignment Mechanism" [1910.14152, R. T. Co, L. J. Hall, K. Harigaya]
- "Parametric Resonance" [1711.10486, 2004.00629, R. T. Co, L. J. Hall, K. Harigaya]

goal: examine the role of radiative corrections to Φ_{PQ} dynamics

Coleman-Weinberg (CW): $\lambda(\mu) = 0$, $g^2 \Phi_{PQ} \bar{Q}_L Q_R + h.c.$

interesting possibility: stability by gravitational interactions (explicit $U(1)_{PQ}$ breaking)

$$V^{(1)} = V_F + \mathcal{O}_5 + \mathcal{O}_6 + \dots \qquad \mathcal{O}_i \sim \frac{1}{M_P^{i-4}} \Phi_{PQ}^{\dagger k} \Phi_{PQ}^{\prime} \quad k \neq l$$

Coleman-Weinberg (CW): $\lambda(\mu) = 0$, $g^2 \Phi_{PQ} \bar{Q}_L Q_R + h.c.$ stability $\Rightarrow V^{(1)} = V_B + V_F$ $V_B^{(0)} \equiv \frac{1}{2} m_{\phi}^2 \phi^2 + \lambda_{mix} \phi^2 \Phi_{PQ}^{\dagger} \Phi_{PQ} = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} \lambda_{mix} \phi^2 S^2 \left(+ \frac{1}{2} \xi_{\phi} \mathcal{R} \phi^2 \right)$ Coleman-Weinberg (CW): $\lambda(\mu) = 0$, $g^2 \Phi_{PQ} \bar{Q}_L Q_R + h.c.$ stability $\Rightarrow V^{(1)} = V_B + V_F$ $V_B^{(0)} \equiv \frac{1}{2} m_{\phi}^2 \phi^2 + \lambda_{mix} \phi^2 \Phi_{PQ}^{\dagger} \Phi_{PQ} = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} \lambda_{mix} \phi^2 S^2 \left(+ \frac{1}{2} \xi_{\phi} \mathcal{R} \phi^2 \right)$

the "usual" zero-temperature part of the potential in the radiation era:

$$V^{(1)} = \frac{1}{64\pi^2} \left\{ N_{\phi} \mathcal{M}_{\phi}^4 \left[\log \left(\frac{\mathcal{M}_{\phi}^2}{\mu^2} \right) - \frac{3}{2} \right] - N_Q \mathcal{M}_Q^4 \left[\log \left(\frac{\mathcal{M}_Q^2}{\mu^2} \right) - \frac{3}{2} \right] \right\}$$

explicitly

$$V^{(1)} = \frac{1}{64\pi^2} \left\{ N_{\phi} (m_{\phi}^2 + \lambda_{mix} S^2)^2 \left[\log \frac{m_{\phi}^2 + \lambda_{mix} S^2}{\mu^2} - \frac{3}{2} \right] - N_Q (\frac{g^2}{2} S^2)^2 \left[\log \frac{\frac{g^2}{2} S^2}{\mu^2} - \frac{3}{2} \right] \right\}$$

Coleman-Weinberg (CW): $\lambda(\mu) = 0$, $g^2 \Phi_{PQ} \bar{Q}_L Q_R + h.c.$ stability $\Rightarrow V^{(1)} = V_B + V_F$ $V_B^{(0)} \equiv \frac{1}{2} m_{\phi}^2 \phi^2 + \lambda_{mix} \phi^2 \Phi_{PQ}^{\dagger} \Phi_{PQ} = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} \lambda_{mix} \phi^2 S^2 \left(+ \frac{1}{2} \xi_{\phi} \mathcal{R} \phi^2 \right)$

the "usual" zero-temperature part of the potential in the radiation era:

Corrections to "usual" CW in inflationary Universe $(\mathcal{R} = 12H_I^2 \text{ in deSitter})^2$:

$$V^{(1)}(S) = \frac{1}{64\pi^2} \left\{ N_{\phi} \mathcal{M}_{\phi}^4 \left[\log \frac{|\mathcal{M}_{\phi}|^2}{\mu^2} - \frac{3}{2} \right] - N_Q \mathcal{M}_Q^4 \left[\log \frac{|\mathcal{M}_Q|^2}{\mu^2} - \frac{3}{2} \right] - N_{\phi} \frac{1}{15} H_I^4 \log \frac{|\mathcal{M}_{\phi}|^2}{\mu^2} + N_Q \frac{38}{15} H_I^4 \log \frac{|\mathcal{M}_Q|^2}{\mu^2} \right\}$$

where

$$\mathcal{M}_{\phi}^2 = m_{\phi}^2 + \left(\xi_{\phi} - \frac{1}{6}\right) 12 H_I^2 + \lambda_{mix} S^2$$

 $\mathcal{M}_Q^2 = H_I^2 + rac{g^2}{2} S^2$

the potential starts becoming somewhat complicated...

²[1904.11373, R. J. Hardwick, T. Markkanen, S. Nurmi]

$$\mathcal{M}_{\phi}^{2} = m_{\phi}^{2} + \left(\xi_{\phi} - \frac{1}{6}\right) 12H_{I}^{2} + \lambda_{mix}S^{2}, \quad \mathcal{M}_{Q}^{2} = H_{I}^{2} + \frac{g^{2}}{2}S^{2}$$

... from now on we will consider a particular (simplified) case:

•
$$N_{\phi} = N_Q = 4 \times 3$$

• $\lambda_{mix} \equiv \frac{1}{2}g^2(1+\epsilon), \quad 0 < \epsilon << 1, \quad ("SUSY" limit)$
• $\mathcal{M}_{\phi}^2 \Big|_{S=0} > \frac{1}{4}H_I^2 \ (\phi \text{ does NOT fluctuate})$

- assume $\xi_{PQ}H_I^2S^2$ is negligible
- \Rightarrow thermal corrections due to ${\it T_{GH}}$ prove negligible

$$\mathcal{M}_{\phi}^{2} = m_{\phi}^{2} + \left(\xi_{\phi} - \frac{1}{6}\right) 12H_{I}^{2} + \lambda_{mix}S^{2}, \quad \mathcal{M}_{Q}^{2} = H_{I}^{2} + \frac{g^{2}}{2}S^{2}$$

... from now on we will consider a particular (simplified) case:

•
$$N_{\phi} = N_Q = 4 \times 3$$

• $\lambda_{mix} \equiv \frac{1}{2}g^2(1 + \epsilon), \quad 0 < \epsilon << 1, \quad ("SUSY" limit)$
• $\mathcal{M}^2_{\phi}\Big|_{S=0} > \frac{1}{4}H^2_I \quad (\phi \text{ does NOT fluctuate})$
• assume $\xi_{PQ}H^2_IS^2$ is negligible

 \Rightarrow thermal corrections due to T_{GH} prove negligible

Now, let's expand:

$$V^{(1)} = C_2 \cdot S^2 + C_4 \cdot S^4 + \dots \Rightarrow C_4 \propto \left(\lambda_{mix}^2 \log \frac{\mathcal{M}_{\phi}^2|_{S=0}}{\mu^2} - (\frac{g^2}{2})^2 \log \frac{\mathcal{H}_{I}^2}{\mu^2} \right)$$

$$C_4 < 0 \text{ if } \mathcal{H}_{I} \text{ is "not too small"} \longrightarrow V^{(1)} \text{ could have (second) minimum at larger scale}$$

 \implies for the "not too small" H_I , the $U(1)_{PQ}$ can be restored...

... or even there exists a global minimum S_{min} at larger scale

if H_l is "not too small", the scale S_{min} grows as we approach the "SUSY" limit:

if H_l is "not too small", the scale S_{min} grows as we approach the "SUSY" limit:

at the global minimum $V'' \ll \frac{9}{4}H_I^2$ so the stochastic dynamics indeed occur;

$$S_{min} \sim \langle S \rangle \qquad (\equiv S_i)$$

 $\frac{\text{Quantitatively:}}{H_I \text{ is "not too small":}}$

$$\langle S \rangle^2 \sim (a \text{ few}) \times 10^{(n-1)} \times \frac{H_l^2}{g^2}, \qquad \lambda_{mix} = \frac{1}{2}g^2(1+10^{-n})$$

 H_I "too small":

$$\langle S
angle^2 \sim \ (\simeq 1) imes rac{H_l^2}{g^2}$$

such "SUSY" enhancement of $\langle S \rangle^2$ could be desirable in various non-thermal mechanisms for DM generation

Quantitatively:[If δa survive until V(a) is generated, then
misalignment is at work and]

$$\langle S
angle^2\sim$$
 (a few) $imes$ 10⁽ⁿ⁻¹⁾ $imes$ $rac{H_l^2}{g^2},\qquad\lambda_{mix}=rac{1}{2}g^2(1+10^{-n})$

$$\left[\stackrel{\text{axion CDM isocurvature}}{\Longrightarrow}\lambda_{mix},g^2\lesssim 10^{-5},\qquad(n=3)
ight]$$

 H_I "too small":

$$\langle S
angle^2 \sim \ (\simeq 1) imes rac{H_l^2}{g^2}$$

$$\stackrel{\text{(axion CDM isocurvature}}{\Longrightarrow} \lambda_{\text{mix}}, g^2 \lesssim 10^{-8}$$

such "SUSY" enhancement of $\langle S\rangle^2$ could be desirable in various non-thermal mechanisms for DM generation

$$\mathcal{M}_{\phi}^2 = m_{\phi}^2 + \left(\xi_{\phi} - \frac{1}{6}\right) 12 H_I^2 + \lambda_{mix} S^2 \,, \; \lambda_{mix} \equiv \frac{1}{2} g^2 (1+\epsilon)$$

corrections to $\lambda(\mu) = 0$ are contributions to C_4 in $V^{(1)} = C_2 S^2 + C_4 S^4 + ...$ compare:

$$\frac{\lambda(\mu)}{4}S^4 \qquad vs \qquad \frac{3\times 4}{64\pi^2} \left(\lambda_{mix}^2 \log \frac{\mathcal{M}_{\phi}^2\Big|_{S=0}}{\mu^2} - (\frac{g^2}{2})^2 \log \frac{\mathcal{H}_l^2}{\mu^2}\right)S^4$$

$$\mathcal{M}_{\phi}^{2} = m_{\phi}^{2} + \left(\xi_{\phi} - \frac{1}{6}\right) 12H_{I}^{2} + \lambda_{mix}S^{2}, \ \lambda_{mix} \equiv \frac{1}{2}g^{2}(1+\epsilon)$$
[If δa survive until V(a) is generated]

corrections to $\lambda(\mu) = 0$ are contributions to C_4 in $V^{(1)} = C_2 S^2 + C_4 S^4 + ...$ compare:

$$\frac{\lambda(\mu)}{4}S^4 \qquad vs \qquad \frac{3\times 4}{64\pi^2} \left(\lambda_{mix}^2 \log \frac{\mathcal{M}_{\phi}^2\Big|_{S=0}}{\mu^2} - (\frac{g^2}{2})^2 \log \frac{\mathcal{H}_{I}^2}{\mu^2}\right)S^4$$

the conclusions on $\langle S \rangle^2$ enchancement and on the upper bound on $\lambda_{\it mix},g^2\sim 10^{-5}$ are unaffected for

$$\lambda(\mu) \lesssim 10^{-12}$$

 \Rightarrow much weaker condition than isocurvature constraints based on $\frac{\lambda}{4}S^4$ at tree-level[†]:

$$\lambda \lesssim 10^{-20}$$

 † "Introduction to the Theory of the Early Universe Cosmological Perturbations and Inflationary Theory", D. S. Gorbunov, V. A. Rubakov

can δa survive? \rightarrow can S oscillations survive until $U(1)_{PQ}$ breaking?

early onset of S oscillations, e.g.

$$\left(\frac{T_i}{T_{RH}}\right)^4 \sim \frac{5 \cdot 1.66^2}{\pi^3} \frac{\epsilon}{64\pi^2} \frac{5 \times 10^2}{\epsilon_{RH}^2} \left[6\log\frac{5 \times 10^2 H_I^2}{\mu^2} + 1\right]$$

large thermal mass corrections (symmetry is restored) $\rightarrow S$ would not resonantly decay to itself: $S \gg \frac{m_S}{\lambda_{mix}}$ not fulfilled $\rightarrow \dot{m}/m^2 \gg 1$ is not fulfilled... ... the broad resonance to massive particles:

$$m_{\phi}^2 < \omega_S \sqrt{\lambda_{mix}} S$$

even if possible at the beginning, is later blocked (decrease of S and ω_S)

perturbative decay inefficient (small couplings)

thermalization by gluons (or the PQ fermions) is (rather) inefficient³

³[2004.00629, R. T. Co, L. J. Hall, K. Harigaya]

1.

1. the "traditional" description of Φ_{PQ} dynamics in the "PQ unbroken scenario" $(f_a \ll H_I)$ is ofter too simplified, especially if $\lambda < O(0.01)$:

e.g. the field acquires large S_i , if inflation lasts long enough

1. the "traditional" description of Φ_{PQ} dynamics in the "PQ unbroken scenario" $(f_a \ll H_I)$ is ofter too simplified, especially if $\lambda < O(0.01)$:

e.g. the field acquires large S_i , if inflation lasts long enough

2. correct treatment of Φ_{PQ} dynamics in case of super small λ relevant, because such scenarios are often analyzed in the literature, e.g. to generate large S_i

1. the "traditional" description of Φ_{PQ} dynamics in the "PQ unbroken scenario" $(f_a \ll H_I)$ is ofter too simplified, especially if $\lambda < O(0.01)$:

e.g. the field acquires large S_i , if inflation lasts long enough

- 2. correct treatment of Φ_{PQ} dynamics in case of super small λ relevant, because such scenarios are often analyzed in the literature, e.g. to generate large S_i
- 3. to this aim we, first, applied the Coleman-Weinberg approach to $U(1)_{PQ}$ breaking and found enhancement of S_i in the "SUSY" limit if $H_I \sim O(\mu)$;

4. if S oscillation survive until $U(1)_{PQ}$ breaking, then the enhancement translates into $\simeq 10^3 x$ weaker upper bounds on λ_{mix}, g^2 from CDM isocurvature

5.

- 4. if S oscillation survive until $U(1)_{PQ}$ breaking, then the enhancement translates into $\simeq 10^3 x$ weaker upper bounds on λ_{mix}, g^2 from CDM isocurvature
- 5. the above conclusions are unaffected if $\lambda(\mu) \lesssim 10^{-12}$, suggesting that constraints on λ based on tree-level estimates might be relaxed

- 4. if S oscillation survive until $U(1)_{PQ}$ breaking, then the enhancement translates into $\simeq 10^3 x$ weaker upper bounds on λ_{mix}, g^2 from CDM isocurvature
- 5. the above conclusions are unaffected if $\lambda(\mu) \leq 10^{-12}$, suggesting that constraints on λ based on tree-level estimates might be relaxed
- 6. we presented qualitative arguments, based on recent results and theory of resonant decay, that in the scenario we consider, S oscillation should survive

- 4. if S oscillation survive until $U(1)_{PQ}$ breaking, then the enhancement translates into $\simeq 10^3 x$ weaker upper bounds on λ_{mix}, g^2 from CDM isocurvature
- 5. the above conclusions are unaffected if $\lambda(\mu) \leq 10^{-12}$, suggesting that constraints on λ based on tree-level estimates might be relaxed
- 6. we presented qualitative arguments, based on recent results and theory of resonant decay, that in the scenario we consider, S oscillation should survive

THANK YOU

BACK UP

in bulk of parameter space, ρ is light enough to have stochastic dynamics; although, the larger ρ_{min} the deeper the minimum and the more concentrated the distribution is around the global minimum:

 $<\rho>^2\sim\rho_{\min}^2$