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The QCD Axion (a/f, = 6):

10° GeV
fa

V() = m3f7 (1 — cosb), ma:6eV< ) T < 1GeV

Axion-Like Particle (ALP):
V() = U0 = ¢/fy) A;‘), mg ~ Ai/ﬁb +1 free parameter

The Misalignment Mechanism: (homogeneous) initial 6; # 0

3+ 3Ha+ V'(a) =0 = Axion starts oscillating at m ~ 3H (TP > 1GeV)

osc
1 22 2 -3
vV~ Smeat = a(t) = A(t)cos(myt +6;) AND p, ~ A~ R
Axion/ALP condensate = Cold Dark Matter candidate

review in [1510.07633, D. J. E. Marsh|



QCD Axion as CDM:

£ 7/6
2 4 a 2
Q.h? ~ 2% 10 <10166e\/) x 0;

Q.0 = Qepmh? =012 = £, =101 GeV  (for ; ~ 1)

ALP as CDM:
_1 sa (M2 (01\?
Q¢ - 6(9Qr) <HO Mpl

ms = 107%eV,...,10 eV = ¢; = 10M°GeV, ..., 10"°GeV

e.g.:



What is the origin of ¢;¢ go back to inflationary dynamics of ®pg

2 4
Vee = A (‘DLQ‘DPQ - %fa2> +54 Ten®po®ro

1. > H; ("PQ broken scenario”)
thermal mass due to Tgy = 2%’ does NOT restore U(1)pq

®pq quickly attains its vacuum' |®pg| = f, = uniform (random) 6; in our Universe
T[Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart]

axion is massless m,(T) — 0, but light (or massless) fields fluctuate
quantum fluctuations of each mode k that leaves the horizon (k < H) "freezes”

= random "kicks" to field a averaged over Hubble volumes (" stochastic fluctuations’)



060 grow around 6;:
H;
472f,°

the larger f, the slower §6 dynamics

(660%(x)) = X AN, a=fh

misalignment = {§a = isocurvature fluctuations of CDM
strong constraints on the CDM isocurvature power
for the QCD Axion:
= H; <10°GeV  (#; ~1,f, ~ 10'GeV)

for an ALP:
= H; <101°GevV (£, < 10'7°GeV)

allowed H; < 10MGeV...



2 .
Vpg = A (q’LQq’PQ - %@2) +55 Ten®po®rq

2. f, < H; ("PQ unbroken scenario”)
thermal mass due to Tgy = % restores U(1)pg during inflation

The traditional approach: [review in 1510.07633, D. J. E. Marsh]
@ ®pg attains 0 (false vacuum) during inflation (NO stochastic fluctuations)

e U(1)pgq is broken later, when

For T < T¢: 60 ~ O(1) = "white noice” isocurvature power!
Jr[1903.06194, M. Feix, J. Frank, A. Pargner, R. Reischke, B.M. Schéfer, T. Schwetz]

= the "classical Axion window" for misalignment open:

f, ~ 1011GeV, H; = 10%2GeV,...,10"GeV, (0% = 712/3

(disastrous for C = Npy > 1)



2 4+
Vea = (®ho®ra = 1) 5 TéuPho®ro

2. f, < H; ("PQ unbroken scenario™”)
thermal mass due to Tgy = % restores U(1)pq during inflation

but ®pq is light at false vacuum’: V(,(0) = aH} /487° < Hf — 0®pq emerge
f[hep-ph/0606107, M. Beltran, J. Garcia-Bellido, J. Lesgourgues]



2
VPQ =\ (q)];;Qq)pQ — %fz) +% TéH(DPQ(DPQ

2. f; < H; ("PQ unbroken scenario”)
thermal mass due to Tgy = % restores U(1)pq during inflation

but ®pq is light at false vacuum’: V(,(0) = aH} /487° < Hf — 0®pq emerge
f[hep-ph/0606107, M. Beltran, J. Garcia-Bellido, J. Lesgourgues]

"The stochastic approach”: [A. A. Starobinsky (and J. Yokoyama), 82', 85" (, 94') ]
apply to describe evolution of a field x(t,x) coarse-grained

over H; volume (X € X1, X2, ...), at each X; accounting for:
@ the random quantum "kicks” (uncorrelated in X)

@ the classical evolution (towards the minimum)



2
Vg = A (q’LQq’PQ - %ff) +51 Ten®po®ra

2. f; < H; ("PQ unbroken scenario”)

thermal mass due to Tgy = % restores U(1)pq during inflation

but ®pq is light at false vacuum’: V(,(0) = aH} /487° < Hf — 0®pq emerge
f[hep-ph/0606107, M. Beltran, J. Garcia-Bellido, J. Lesgourgues]

"The stochastic approach”: [A. A. Starobinsky (and J. Yokoyama), 82', 85" (, 94') ]
apply to describe evolution of a field x(t,x) coarse-grained
over H; volume (X € X1, X2, ...), at each X; accounting for:

@ the random quantum "kicks” (uncorrelated in X)
@ the classical evolution (towards the minimum)
— probability distribution

(probability of finding x in d"x) = P(¢t,x)d"x

- : P(x) x exp (—% V(X))



2 .
Veg = A (®ho®ro = 312)" +5 T2, 0ho®rq
2. f, < H; ("PQ unbroken scenario”)

P(t,®pq) approaches P(®pp) after! AN ~ 15. x (%)1/2 e-folds

= AN <60

P(®pq) reflects U(1)pg =

even if Try < f;, the traditional approach to "PQ unbroken scenario” could still lead
to correct results for but not for A <

![Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart]



2 . ,
Vpe = A (¢JIFDQ¢PQ - %ff) +31 Ten®ro®ras  Ppg = 55€”
2. f, < H; ("PQ unbroken scenario”)

A < 0.01 — assume long enough inflation: P(®pg) achieved before last 60 e-folds
typical initial value S: is predicted by P(®pg) o exp (—% V(S)), e.g.
!

H
sometimes very large S; is necessary and in the corresponding analyses A\ ~ 1072 are
explicitly considered, e.g.:
@ "Kinetic Misalignment Mechanism” [1910.14152, R. T. Co, L. J. Hall, K. Harigaya]

@ "Parametric Resonance”  [1711.10486, 2004.00629, R. T. Co, L. J. Hall, K. Harigaya]

goal: examine the role of radiative corrections to ®pg dynamics



Coleman-Weinberg (CW): A(u) = 0, g2®PpoQLQr + h.c.

interesting possibility: stability by gravitational interactions (explicit U(1)pq breaking)

L otk gl
yi—i®re®ro K7
P

V(I)IVF+O5—|—O6—|—... O; ~



Coleman-Weinberg (CW): A(u) = 0, g2®poQLQr + h.c.

stability = V(1) = Vg + V¢

1 1 1 1
VE) = 23 6+ Amix @ pg®pg = 5m3 67 + S Amix 757 (+2£¢R(/>2)



Coleman-Weinberg (CW): A(u) = 0, g2®PpoQLQr + h.c.
stability = V(1) = Vg + V¢
©_1 5. 2 4yt 1 5,0 1 22 1 2
VB = §m¢¢ + )\mix¢ ¢PQ¢PQ = §m¢¢ + EAmixgb S +§£(‘)RO

the "usual” zero-temperature part of the potential in the radiation era:
1 ‘\/12 3 3
v = N, | ) 2 NoMY Jlog [ —2 ) =2

explicitly
1 m% + )\mixs2 3
v =~ {/\/qs(mﬁ5 + AmixS?)? [|og —z

641




Coleman-Weinberg (CW): A(n) =0, g2PpoQLQr + h.c.

stability = V(Y = Vg + V¢

1 1 1 1 ‘
VE) = 2mE & + Aix 8 Phg®pg = 35 6 + 2 Ami 677 <+250Ro2>

the "usual” zero-temperature part of the potential in the radiation era:

V(e)
2r




Corrections to "usual” CW in inflationary Universe (R = 12H? in deSitter)?:
vw$=¢JMMﬂm;ﬂﬂ%MHmlﬂﬂ
1 144 38 14
—NyL Hflog 225k 4 N B H IogT}

where

= m3 + (& — §) 12H} + Amin S?
— H? 4+ £.52

the potential starts becoming somewhat complicated. . .

2[1904.11373, R. J. Hardwick, T. Markkanen, S. Nurmi]



,\/1(2’ = mi + (EO - %) 12HI2 + )\mix527

...from now on we will consider a particular (simplified) case:
o Ny=Ng=4x3
o Ami=18%(1+¢), O0<e<<1,  ("SUSY" limit)
o M? o’ TH? (¢ does NOT fluctuate)

@ assume §pQH,252 is negligible

= thermal corrections due to Ty prove negligible



M2 =m3 + (& — §) 12H7 + AmixS?, =H? +£°5°
...from now on we will consider a particular (simplified) case:
o Ny=Ng=4x3
@ \pix = %gz(l +¢), 0<e<<l, ("SUSY" limit)
° M? o’ TH? (¢ does NOT fluctuate)
@ assume §pQH,252 is negligible
= thermal corrections due to Ty prove negligible

Now, let's expand:

>

N 2
VD =G -S24 G- 5%+ ... = G <)\2 log 7"#25:0 — (&)2log Zg)

mix
C4 < 0if Hy is "not too small”  ~» V) could have (second) minimum at larger
scale



£=1/6, Ms=0.5 , Apix=0.2, g?=0.18

— H=13
— H=12
H=1.1
H=1.
H=09

50

40

30

£=1/6, ms=1., Amix=0.2, g?=0.18

= for the "not too small” Hj, the U(1)pg can be restored. ..

...or even there exists a global minimum S,,;, at larger scale

— H=19
— H=18
H=17
H=16
H=15



if H; is "not too small”, the scale

£=1/8, mg=0.2, Ayx=0.2, g?=0.19

Smin grows as we

— H=12

— H=11
H=1.
H=0.9
H=0.8

\4
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approach the "SUSY” limit:

£=1/6, mg=1., Anix=0.2, g°= 0.196
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P
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if H, is "not too small”, the scale

£=1/8, mg=0.2, Ayx=0.2, g?=0.19

at the global minimum V" « %HIQ so the stochastic dynamics indeed occur;

Smin ~ <5>

= 5/)

Smin grows as we approach the "SUSY” limit:

— H=12

— H=11
H=1.
H=0.9
H=0.8
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Quantitatively:
H; is "not too small”:

(5)% ~ (a few) x 10D x B\ = 1g2(1 4 1077)

H; "too small”:

such "SUSY” enhancement of (S)2 could be desirable in various non-thermal
mechanisms for DM generation



Quantitatively: [ If da survive until V(a) is generated, then

H; is "not too small”: misalignment is at work and |
. H? _
($)? ~ (a few) x 100D 5 2, A = 38°%(1+107")
[axion CDl\gs}ocurvature /\mix,g2 5 10_5’ (n _ 3)}

H; "too small”:
2
(S22~ (1) x %

axion CDM isocurvature 2 -8
[ — Amixug 5 10 }

such "SUSY” enhancement of (S)2 could be desirable in various non-thermal
mechanisms for DM generation



\/1(2’ = mé + (‘fo - %) 12HI2 + )\m,'XSZ, >\mix = %g2(1 + 6)

corrections to A(i) = 0 are contributions to C4 in V(1) = G52 + C4S* + ...
compare:

k) s 3x4 (o M0

4 S a2 | i T




M2 =m3 + (S — §) 12H7 + AmixS®, Amix = 38°%(1+¢)
[ If da survive until V(a) is generated |
corrections to A(u) = 0 are contributions to Cy in V) = G52+ G54+ ...
compare:

A1) ca 3x4 (2 M3 s—o (&, H
TS vs 6472 mix |0gT - (7) |OgF

54

2 enchancement and on the upper bound on Amix, g% ~ 107 are

the conclusions on (S)
unaffected for

Ap) S 107+

=much weaker condition than isocurvature constraints based on %54 at
tree-level':
A <1070

T " Introduction to the Theory of the Early Universe Cosmological Perturbations and Inflationary
Theory”, D. S. Gorbunov, V. A. Rubakov



can da survive? — can S oscillations survive until U(1)pg breaking?

early onset of S oscillations, e.g.

5 x 102H?
2

+1

7. \* 5.1.662 ¢ 5x102
~ 6 log

3 2~ 2
TrH ™ 647 eny

large thermal mass corrections (symmetry is restored)
— S would not resonantly decay to itself: S>> " not fulfilled

— m/m?>> 1 is not fulfilled. ..



...the broad resonance to massive particles:

mé < wsy/ )\m,'XS

even if possible at the beginning, is later blocked (decrease of S and ws)

perturbative decay inefficient (small couplings)

thermalization by gluons (or the PQ fermions) is (rather) inefficient?

3[2004.00629, R. T. Co, L. J. Hall, K. Harigaya]



Summary



Summary

1. the "traditional” description of ®pg dynamics in the "PQ unbroken scenario”
(fs < H)) is ofter too simplified, especially if A <O(0.01):

e.g. the field acquires large S;, if inflation lasts long enough
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Summary

1. the "traditional” description of ®pg dynamics in the "PQ unbroken scenario”
(fs < H)) is ofter too simplified, especially if A <O(0.01):

e.g. the field acquires large S;, if inflation lasts long enough

2. correct treatment of ®pg dynamics in case of super small A relevant, because
such scenarios are often analyzed in the literature, e.g. to generate large S;

3. to this aim we, first, applied the Coleman-Weinberg approach to U(1)pg breaking
and found enhancement of S; in the "SUSY” limit if Hj ~ O(u);



4. if S oscillation survive until U(1)pq breaking, then the enhancement translates
into ~ 103x weaker upper bounds on ik, g2 from CDM isocurvature
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. if S oscillation survive until U(1)pqg breaking, then the enhancement translates
into ~ 103x weaker upper bounds on ik, g2 from CDM isocurvature

. the above conclusions are unaffected if A(1) < 10712, suggesting that constraints
on A based on tree-level estimates might be relaxed

. we presented qualitative arguments, based on recent results and theory of
resonant decay, that in the scenario we consider, S oscillation should survive

THANK YOU



BACK UP



£=1/6, mg=0.5, Amix=0.2, g°= 0.19, H=1.




in bulk of parameter space, p is light enough to have stochastic dynamics; although,
the larger pmin the deeper the minimum and the more concentrated the distribution is
around the global minimum:

Anix=1.1 67 Amix=1.01 ¢
. " . . 7
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