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The QCD Axion (a/fa ≡ θ):

V (θ) = m2af
2
a (1− cos θ) , ma ≃ 6 eV

(
106 GeV

fa

)
, T ≲ 1GeV

Axion-Like Particle (ALP):

V (θ) → U(θ′ ≡ ϕ/fϕ) ∝ Λ4ϕ, mϕ ∼ Λ2ϕ/fϕ +1 free parameter

The Misalignment Mechanism: (homogeneous) initial θi ̸= 0

ä+ 3Hȧ+ V ′(a) = 0 ⇒ Axion starts oscillating at m ∼ 3H (TQCD
osc > 1GeV)

V ≈ 1
2
m2a2 ⇒ a(t) = A(t) cos(mat + θi ) AND ρa ∼ A2 ∼ R−3

Axion/ALP condensate ≡ Cold Dark Matter candidate

review in [1510.07633, D. J. E. Marsh]
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QCD Axion as CDM:

Ωah
2 ∼ 2× 104

(
fa

1016 GeV

)7/6
× θ2i

Ωah
2 = ΩCDMh2 = 0.12 ⇒ fa ≃ 1011 GeV (for θi ≃ 1)

ALP as CDM:

Ωϕ =
1
6
(9Ωr )

3/4
(
mϕ

H0

)1/2( ϕi

Mpl

)2
e.g.:

mϕ = 10−12eV, . . . , 10−24eV ⇒ ϕi = 10
14.5GeV, . . . , 1017.5GeV
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What is the origin of θi? go back to inflationary dynamics of ΦPQ

VPQ = λ
(
Φ†
PQΦPQ − 12 f

2
a

)2
+ α
24T

2
GHΦ

†
PQΦPQ

1. fa ≫ HI (”PQ broken scenario”)
thermal mass due to TGH = HI

2π does NOT restore U(1)PQ

ΦPQ quickly attains its vacuum† |ΦPQ | = fa ⇒ uniform (random) θi in our Universe
†[Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart]

axion is massless ma(T ) → 0, but light (or massless) fields fluctuate
quantum fluctuations of each mode k that leaves the horizon (k ≲ H) ”freezes”

⇒ random ”kicks” to field a averaged over Hubble volumes (”stochastic fluctuations”) 4/38



δθ grow around θi :

⟨δθ2(x)⟩ =
H2I
4π2fa

2 ×∆Ne a ≡ faθ

the larger fa the slower δθ dynamics

misalignment ⇒ δa ≡ isocurvature fluctuations of CDM

strong constraints on the CDM isocurvature power

for the QCD Axion:

⇒ HI < 10
7GeV (θi ≃ 1, fa ≃ 1011GeV)

for an ALP:
⇒ HI ≲ 10

10GeV (fϕ < 1017.5GeV)

allowed HI ≪ 1014GeV. . .
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VPQ = λ
(
Φ†
PQΦPQ − 12 f

2
a

)2
+ α
24T

2
GHΦ

†
PQΦPQ

2. fa ≪ HI (”PQ unbroken scenario”)
thermal mass due to TGH = HI

2π restores U(1)PQ during inflation

The traditional approach: [review in 1510.07633, D. J. E. Marsh]

ΦPQ attains 0 (false vacuum) during inflation (NO stochastic fluctuations)

U(1)PQ is broken later, when T ∼ TC

For T ≲ TC : δθ ∼ O(1) → ”white noice” isocurvature power†
†[1903.06194, M. Feix, J. Frank, A. Pargner, R. Reischke, B.M. Schäfer, T. Schwetz]

⇒ the ”classical Axion window” for misalignment open:

fa ≃ 1011GeV, HI = 10
12GeV, . . . , 1014GeV, ⟨θ2⟩ = π2/3

strings are formed (disastrous for C = NDW > 1) +Ωa
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VPQ = λ
(
Φ†
PQΦPQ − 12 f

2
a

)2
+ α
24T

2
GHΦ

†
PQΦPQ

2. fa ≪ HI (”PQ unbroken scenario”)
thermal mass due to TGH = HI

2π restores U(1)PQ during inflation

but ΦPQ is light at false vacuum†: V ′′
PQ(0) = αH2I /48π

2 ≪ H2I → δΦPQ emerge
†[hep-ph/0606107, M. Beltrán, J. Garćıa-Bellido, J. Lesgourgues]

”The stochastic approach”: [A. A. Starobinsky (and J. Yokoyama), 82’, 85’ (, 94’) ]
apply ”the Langevin equation” to describe evolution of a field χ(t, x̄) coarse-grained
over HI volume (x̄ ∈ x̄1, x̄2, . . .), at each x̄i accounting for:

the random quantum ”kicks” (uncorrelated in x̄)

the classical evolution (towards the minimum)

→ probability distribution P(t, χ) (satisfies ”the Fokker-Planck equation”):

(probability of finding χ in dnχ) = P(t, χ) dnχ

⇒ the stationary solution: P(χ) ∝ exp
(
− 8π2
3H4I

V (χ)
)
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VPQ = λ
(
Φ†
PQΦPQ − 12 f

2
a

)2
+ α
24T

2
GHΦ

†
PQΦPQ

2. fa ≪ HI (”PQ unbroken scenario”)

P(t,ΦPQ) approaches P(ΦPQ) after1 ∆N ≃ 15.×
(
1
λ

)1/2
e-folds

λ ≳ 0.05 ⇒ ∆N < 60

P(ΦPQ) reflects U(1)PQ ⇒ ⟨δθ2⟩ ≃ π2/3 AND strings are formed1

even if TRH < fa, the traditional approach to ”PQ unbroken scenario” could still lead
to correct results for λ ≳ 0.05 but not for λ ≲ 0.05

1[Phys.Rev.D 46 (1992) 532-538, D. H. Lyth, E. D. Stewart] 10/38



VPQ = λ
(
Φ†
PQΦPQ − 12 f

2
a

)2
+ α
24T

2
GHΦ

†
PQΦPQ , ΦPQ = 1√

2
S e iθ

2. fa ≪ HI (”PQ unbroken scenario”)

λ ≪ 0.01→ assume long enough inflation: P(ΦPQ) achieved before last 60 e-folds

typical initial value Si is predicted by P(ΦPQ) ∝ exp
(
− 8π2
3H4I

V (S)
)
, e.g.:

Si ≃ 0.3×
HI

λ1/4

sometimes very large Si is necessary and in the corresponding analyses λ ∼ 10−20 are
explicitly considered, e.g.:

”Kinetic Misalignment Mechanism” [1910.14152, R. T. Co, L. J. Hall, K. Harigaya]

”Parametric Resonance” [1711.10486, 2004.00629, R. T. Co, L. J. Hall, K. Harigaya]

goal: examine the role of radiative corrections to ΦPQ dynamics
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Coleman-Weinberg (CW): λ(µ) = 0, g2ΦPQQ̄LQR + h.c .

interesting possibility: stability by gravitational interactions (explicit U(1)PQ breaking)

V (1) = VF+O5 +O6 + . . . Oi ∼
1

M i−4
P

Φ† k
PQΦ

l
PQ k ̸= l

the ”usual” zero-temperature part of the potential in the radiation era:

V (1) =
1
64π2

{
NϕM4

ϕ

[
log

(
M2

ϕ

µ2

)
− 3
2

]
− NQM4

Q

[
log

(
M2

Q

µ2

)
− 3
2

]}

we take Nϕ = NQ = 3× 4; explicitly

V (1)(S) =
3× 4
64π2

{
(m2ϕ + λmixS

2)2
[
log

m2S + λmixS
2

µ2
− 3
2

]
− (

g2

2
S2)2

[
log

g2

2 S
2

µ2
− 3
2

]}
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Coleman-Weinberg (CW): λ(µ) = 0, g2ΦPQQ̄LQR + h.c .

stability ⇒ V (1) = VB + VF

V
(0)
B ≡ 1

2
m2ϕ ϕ

2 + λmix ϕ
2Φ†

PQΦPQ =
1
2
m2ϕ ϕ

2 +
1
2
λmix ϕ

2S2
(
+
1
2
ξϕRϕ2

)
the ”usual” zero-temperature part of the potential in the radiation era:

V (1) =
1
64π2

{
NϕM4

ϕ

[
log

(
M2

ϕ

µ2

)
− 3
2

]
− NQM4

Q

[
log

(
M2

Q

µ2

)
− 3
2

]}

explicitly

V (1) =
1
64π2

{
Nϕ(m

2
ϕ + λmixS

2)2
[
log

m2S + λmixS
2

µ2
− 3
2

]
− NQ(

g2

2
S2)2

[
log

g2

2 S
2

µ2
− 3
2

]}

13/38



Coleman-Weinberg (CW): λ(µ) = 0, g2ΦPQQ̄LQR + h.c .

stability ⇒ V (1) = VB + VF

V
(0)
B ≡ 1

2
m2ϕ ϕ

2 + λmix ϕ
2Φ†

PQΦPQ =
1
2
m2ϕ ϕ

2 +
1
2
λmix ϕ

2S2
(
+
1
2
ξϕRϕ2

)
the ”usual” zero-temperature part of the potential in the radiation era:

V (1) =
1
64π2

{
NϕM4

ϕ

[
log

(
M2

ϕ

µ2

)
− 3
2

]
− NQM4

Q

[
log

(
M2

Q

µ2

)
− 3
2

]}

explicitly

V (1) =
1
64π2

{
Nϕ(m

2
ϕ + λmixS

2)2

[
log

m2ϕ + λmixS
2

µ2
− 3
2

]
− NQ(

g2

2
S2)2

[
log

g2

2 S
2

µ2
− 3
2

]}

14/38



Coleman-Weinberg (CW): λ(µ) = 0, g2ΦPQQ̄LQR + h.c .

stability ⇒ V (1) = VB + VF

V
(0)
B ≡ 1

2
m2ϕ ϕ

2 + λmix ϕ
2Φ†

PQΦPQ =
1
2
m2ϕ ϕ

2 +
1
2
λmix ϕ

2S2
(
+
1
2
ξϕRϕ2

)
the ”usual” zero-temperature part of the potential in the radiation era:

1 2 3 4
ρ

-2

-1

1

2

V(ρ)
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Corrections to ”usual” CW in inflationary Universe (R = 12H2I in deSitter)
2:

V (1)(S) = 1
64π2

{
NϕM4

ϕ

[
log

|Mϕ|2
µ2

− 32

]
− NQM4

Q

[
log

|MQ |2
µ2

− 32
]

−Nϕ
1
15H

4
I
log

|Mϕ|2
µ2

+ NQ
38
15H

4
I
log |MQ |2

µ2

}
where

M2
ϕ = m2ϕ +

(
ξϕ − 16

)
12H2

I
+ λmixS

2

M2
Q = H2

I
+ g2

2 S
2

the potential starts becoming somewhat complicated. . .

2[1904.11373, R. J. Hardwick, T. Markkanen, S. Nurmi] 16/38



M2
ϕ = m2ϕ +

(
ξϕ − 16

)
12H2I + λmixS

2 , M2
Q = H2I + g2

2 S
2

. . . from now on we will consider a particular (simplified) case:

Nϕ = NQ = 4× 3
λmix ≡ 1

2g
2(1+ ϵ), 0 < ϵ << 1, (”SUSY” limit)

M2
ϕ

∣∣∣
S=0

> 1
4H
2
I (ϕ does NOT fluctuate)

assume ξPQH2I S
2 is negligible

⇒ thermal corrections due to TGH prove negligible

Now, let’s expand:

V (1) = C2 · S2 + C4 · S4 + . . . ⇒ C4 ∝
(
λ2mix log

M2
ϕ|S=0
µ2

− (g
2

2 )
2 log

H2I
µ2

)
C4 < 0 if HI is ”not too small” ⇝ V (1) could have (second) minimum at larger

scale
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0 1 2 3 4 5 6 7
ρ

2

4

6

8

V
ξ=1/6, mS=0.5 , λmix=0.2, g

2=0.18

H =1.3

H =1.2

H =1.1

H =1.

H =0.9

0 2 4 6 8
ρ

20

30

40

50

60
V

ξ=1/6, mS=1., λmix=0.2, g
2=0.18

H =1.9

H =1.8

H =1.7

H =1.6

H =1.5

=⇒ for the ”not too small” HI , the U(1)PQ can be restored. . .

. . . or even there exists a global minimum Smin at larger scale
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if HI is ”not too small”, the scale Smin grows as we approach the ”SUSY” limit:

2 4 6 8 10
ρ

-20

-10

10

20

30

V
ξ=1/6, mS=0.2, λmix=0.2, g

2=0.19

H =1.2

H =1.1

H =1.

H =0.9

H =0.8
2 4 6 8 10 12 14

ρ

-100

-50

50

100

150
V

ξ=1/6, mS=1., λmix=0.2, g
2= 0.196

H =1.6

H =1.5

H =1.4

H =1.3

H =1.2

at the global minimum V ′′ ≪ 9
4H
2
I so the stochastic dynamics indeed occur;

Smin ∼ ⟨S⟩ ≡ Si
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Quantitatively:
HI is ”not too small”:

⟨S⟩2 ∼ (a few)× 10(n−1) × H2I
g2
, λmix = 1

2g
2(1+ 10−n)

isocurvature
=⇒ λmix , g

2 ≲ 10−5, (n = 3)

HI ”too small”:

⟨S⟩2 ∼ (≃ 1)× H2I
g2

isocurvature
=⇒ λmix , g

2 ≲ 10−8

such ”SUSY” enhancement of ⟨S⟩2 could be desirable in various non-thermal
mechanisms for DM generation

22/38



Quantitatively: [ If δa survive until V(a) is generated, then
HI is ”not too small”: misalignment is at work and ]

⟨S⟩2 ∼ (a few)× 10(n−1) × H2I
g2
, λmix = 1

2g
2(1+ 10−n)[

axion CDM isocurvature
=⇒ λmix , g

2 ≲ 10−5, (n = 3)
]

HI ”too small”:

⟨S⟩2 ∼ (≃ 1)× H2I
g2[

axion CDM isocurvature
=⇒ λmix , g

2 ≲ 10−8
]

such ”SUSY” enhancement of ⟨S⟩2 could be desirable in various non-thermal
mechanisms for DM generation
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M2
ϕ = m2ϕ +

(
ξϕ − 16

)
12H2I + λmixS

2 , λmix ≡ 1
2g
2(1+ ϵ)

[ If δa survive until V(a) is generated ]
corrections to λ(µ) = 0 are contributions to C4 in V (1) = C2S

2 + C4S
4 + . . .

compare:

λ(µ)

4
S4 vs

3× 4
64π2

λ2mix log
M2

ϕ

∣∣∣
S=0

µ2
− (

g2

2
)2 log

H2I
µ2

 S4

the conclusions on ⟨S⟩2 enchancement and on the upper bound on λmix , g
2 ∼ 10−5 are

unaffected for
λ(µ) ≲ 10−12

⇒much weaker condition than isocurvature constraints based on λ
4S
4 at

tree-level†:
λ ≲ 10−20

† ”Introduction to the Theory of the Early Universe Cosmological Perturbations and Inflationary
Theory”, D. S. Gorbunov, V. A. Rubakov 24/38
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can δa survive? → can S oscillations survive until U(1)PQ breaking?

early onset of S oscillations, e.g.(
Ti

TRH

)4
∼ 5 · 1.66

2

π3
ϵ

64π2
5× 102

ϵ2RH

[
6 log
5× 102H2I

µ2
+ 1
]

large thermal mass corrections (symmetry is restored)
→ S would not resonantly decay to itself: S ≫ mS

λmix
not fulfilled

→ ṁ/m2 ≫ 1 is not fulfilled. . .
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. . . the broad resonance to massive particles:

m2ϕ < ωS

√
λmixS

even if possible at the beginning, is later blocked (decrease of S and ωS)

perturbative decay inefficient (small couplings)

thermalization by gluons (or the PQ fermions) is (rather) inefficient3

3[2004.00629, R. T. Co, L. J. Hall, K. Harigaya] 27/38



Summary

1. the ”traditional” description of ΦPQ dynamics in the ”PQ unbroken scenario”
(fa ≪ HI ) is ofter too simplified, especially if λ <O(0.01):

e.g. the field acquires large Si , if inflation lasts long enough

2. correct treatment of ΦPQ dynamics in case of super small λ relevant, because
such scenarios are often analyzed in the literature, e.g. to generate large Si

3. to this aim we, first, applied the Coleman-Weinberg approach to U(1)PQ breaking
and found enhancement of Si in the ”SUSY” limit if HI ∼ O(µ); the enhancement
is beyond the arguments of loop power counting or the ”SUSY” limit approach
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4. if S oscillation survive until U(1)PQ breaking, then the enhancement translates
into ≃ 103x weaker upper bounds on λmix , g

2 from CDM isocurvature

5. the above conclusions are unaffected if λ(µ) ≲ 10−12, suggesting that constraints
on λ based on tree-level estimates might be relaxed

6. there seem to be, at least qualitative, arguments based recent results and theory of
resonant decay, that for the scenario we consider, that S oscillation should survive

THANK YOU
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in bulk of parameter space, ρ is light enough to have stochastic dynamics; although,
the larger ρmin the deeper the minimum and the more concentrated the distribution is
around the global minimum:
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