

The MIGDAL experiment Towards observation of the Migdal effect in nuclear scattering

arXiv: 2207.08284

Henrique Araújo, Imperial College London

On behalf of the MIGDAL collaboration

19 July, 2022

14th International Conference on the Identification of Dark Matter – 18-22 July 2022 – Vienna, Austria

The elusive Migdal effect

- Direct DM experiments invoke the Migdal effect to search for nuclear recoils below threshold
- Rare atomic effect predicted in the late 1930s and observed since in radioactive decays – but never recorded in nuclear scattering

Aim: The *unambiguous* observation of the Migdal effect using an optical TPC with low-pressure CF₄ and other gases

Migdal event topology involves a nuclear recoil and

electron recoil originating from the same vertex.

Measurements will probe recoil energies well above those indirectly searched for in most DM searches, but will allow a systematic study in various atoms and molecules

>>> See talk by Chris McCabe for new Migdal calculations

- [1] A. Migdal Ionizatsiya atomov pri yadernykh reaktsiyakh, ZhETF, 9, 1163-1165 (1939)
- [2] A. Migdal *Ionizatsiya atomov pri* α i θ raspade, ZhETF, 11, 207-212 (1941)
- [3] M.S. Rapaport, F. Asaro and I. Pearlman K-shell electron shake-off accompanying alpha decay, PRC 11, 1740-1745 (1975)
- [4] M.S. Rapaport, F. Asaro and I. Pearlman L- and M-shell electron shake-off accompanying alpha decay, PRC 11, 1746-1754 (1975)
- [5] C. Couratin et al., First Measurement of Pure Electron Shakeoff in the β Decay of Trapped ⁶He⁺Ions, PRL **108**, 243201 (2012)
- [6] X. Fabian et al., Electron Shakeoff following the θ^+ decay of Trapped ¹⁹Ne⁺ and ³⁵Ar⁺ trapped ions, PRA, **97**, 023402 (2018)

The MIGDAL experiment

- Low-pressure gas: 50 Torr of CF₄
 - Extended particle tracks
 - Avoid photon interactions
- Optical TPC
 - Imaging: 2x glass-GEMs + camera
 - Ionisation: 120 ITO anode strips
 - Scintillation: photomultiplier tube
- High-yield neutron generators
 - D-D: 2.47 MeV (10⁹ n/s)
 - D-T: 14.7 MeV (10¹⁰ n/s)
 - Defined beam, "clear" through TPC
- Electron and nuclear recoil tracks
 - Migdal: NR+ER tracks, common vertex
 - NR and ER have very different dE/dx
 - 5 keV electron threshold (Fe-55 calibration)

The MIGDAL experiment

Optical-TPC

Double glass-GEMs

hole/pitch: 170/280 μm

gain: ~10⁵

Transfer gap: 2 mm

Field: 600 V/cm

ITO anode

120 strips wire-bonded to Kapton flex-cable strip pitch: 830 µm

Induction gap: 2 mm

Field: 400 V/cm

Detector readout

VUV PMT (Hamamatsu R11410)
Detects primary and
secondary (GEM) scintillation
Absolute depth (z) coordinate
Digitised at 2 ns/sample
[Trigger]

(Hamamatsu ORCA-Fusion)
Detects GEM scintillation through glass viewport behind ITO anode
Readout of (x,y) plane
Exposure: 11.2 ms/frame

ITO anode strips
Post-GEM ionisation
Readout of (x,z) plane
Digitised at 2 ns/sample

NILE Facility at Rutherford Appleton Laboratory, UK

- D-D and D-T fusion generators installed in "shielding bunker"
- Collimators & additional shielding provide clean beam through OTPC
- D-T collimator \sim 1 m, D-D \sim 0.5 m

Simulation stack

Degrad • SRIM/TRIM • Garfield++

• Magboltz • Gmsh/Elmer & ANSYS

Current [fC/ns] -10² -10¹ -10⁰0 10⁰ 10¹ 10²

Anode strip readout

Induction/collection (electronics deconvolved)

Camera readout

Drift+diffusion+GEMs+image

Image analysis
Deconvolution+RidgeFinder

Henrique Araújo (Imperial)

Signal rate calculations

 Folding Migdal double-differential XS (C. McCabe's talk) with C & F recoil spectra + track selection

Migdal search ROI

ER and NR tracks longer than 4 mm: 5-15 keV electron, >130/170 keV F/C recoils

- Apply duty cycle, efficiencies, single-event frames, ...
 - D-D source: 8.9 Migdal events/day (3.9M events/day)
 - D-T source: 29.3 Migdal events/day (4.9M events/day)

Table 1: Nominal neutron beam parameters and estimated event rates from the D-D and D-T generators in CF₄ gas at 50 Torr. Beam widths are indicated at FWHM and for 99% of flux ('halo'). Interaction rates are given for all NR tracks originating in the active region and also for those fully contained within an 8×8 cm² fiducial region and track length greater than 4 mm. Migdal interaction rates (no efficiencies considered) are given for tracks contained in the fiducial region, at track thresholds of 3 mm, 4 mm and 5 mm. The baseline scenario (4 mm, in bold) integrates the NR spectrum from 130 keV for carbon and 170 keV for fluorine, and electron energies in the range 5–15 keV; rates are indicated also for a low electron energy threshold (0.5 keV).

Generator	D-D	D-T
Nominal neutron energy (MeV)	2.47	14.7
,	2.41	14.1
Neutron intensity (n/s)	1 109	4 4010
Emitted (4π)	1×10^9	
Active region	2.6×10^{5}	4.7×10^{5}
Beam width/halo (cm)		
Vertical	9.0/9.0	9.2/9.2
Horizontal	1.4/1.8	1.3/1.5
Recoil spectrum (MeV)	,	•
¹² C mean/end-point	0.37/0.71	0.97/4.2
¹⁹ F mean/end-point	0.17/0.47	,
Interaction rates (evt/s)		•
Total	53	68
Signal-inducing	53	48
Elastic	40	37
Contained tracks [†] (evt/s)		
Total	15	22
Signal-inducing	15	18
Elastic	11	14
Migdal rates [†] (interactions/day)		
NR track ≥ 4 mm, ER>0.5 keV	7,250	26,430
Tracks $\geq 3 \text{ mm (ER} \in 4-15 \text{ keV)}$	89	255
$Tracks \ge 4 \text{ mm } (ER \in 5-15 \text{ keV})$	43	131
$Tracks \ge 5 \text{ mm } (ER \in 6-15 \text{ keV})$	22	74

[†] In 8×8 cm² fiducial region, NR track ≥4 mm unless indicated.

Background

- Many sources considered, mostly insignificant (esp. since C and F K-shells << 5 keV)
- Most challenging: secondary nuclear recoils + finite discrimination (analysis dependent)

Q: When does this little "stub" look like a 5 keV electron?

A: Less than 1 per 10⁶ primary NR

Background events (ER+NR topology) per million NR tracks

Table 3: Number of background and signal events per million neutron-induced recoil tracks for D-D (2.47 MeV) and D-T (14.7 MeV) neutrons incident on CF₄ gas at 50 Torr. Data are given for ~ 100 keV nuclear recoil threshold and > 0.5 keV and 5–15 keV electron energies, with the electron vertex located up to 3 mm from the NR track origin. An entry of "0" indicates that the process cannot occur in the ROI, while " ≈ 0 " denotes a negligible rate of $\ll 0.01$ events per million recoils. Individual background components and topologies are discussed in the text. Signal rates are those from Table 1 for contained tracks above threshold, normalised per million signal-inducing events.

Component	Topology		D-D neutrons		D-T neutrons	
Component			$5-15~\mathrm{keV}$	> 0.5	$5-15~\mathrm{keV}$	
Recoil-induced δ -rays	ıced δ-rays Delta electron from NR track origin		0	541,000	0	
Particle-Induced X-ray Emission (PIXE)						
X-ray emission	Photoelectron near NR track origin	1.8	0	365	0	
Auger electrons	Auger electron from NR track origin	19.6	0	42,000	0	
Bremsstrahlung processes [†]						
Quasi-Free Electron Br. (QFEB)	Photoelectron near NR track origin	112	≈ 0	288	≈ 0	
Secondary Electron Br. (SEB)	Photoelectron near NR track origin	115	≈ 0	279	≈ 0	
Atomic Br. (AB)	Photoelectron near NR track origin	70	≈ 0	171	≈ 0	
Nuclear Br. (NB)	Photoelectron near NR track origin	≈ 0	≈ 0	0.013	≈ 0	
Photon interactions						
Neutron inelastic γ -rays (gas)	Compton electron near NR track origin	1.6	0.47	0.86	0.25	
Random track coincidences	Photo-/Compton electron near NR track		≈ 0	≈ 0	≈ 0	
Gas radioactivity						
Trace contaminants	Electron from decay near NR track origin	0.2	0.01	0.03	≈ 0	
Neutron activation	Electron from decay near NR track origin	0	0	≈ 0	≈ 0	
Secondary nuclear recoil fork	NR track fork near track origin		0.5	_	0.5	
Total background	Sum of the above components		0.98		0.75	
Migdal signal	Migdal electron from NR track origin		32.6		84.2	

Background

- Many sources considered, mostly insignificant (esp. since C and F K-shells ≪5 keV)
- Most challenging: secondary nuclear recoils + finite discrimination (analysis dependent)

Q: When does this little "stub" look like a 5 keV electron?

A: Less than 1 per 10⁶ primary NR

Background events (ER+NR topology) per million NR tracks

Table 3: Number of background and signal events per million neutron-induced recoil tracks for D-D (2.47 MeV) and D-T (14.7 MeV) neutrons incident on CF₄ gas at 50 Torr. Data are given for ~ 100 keV nuclear recoil threshold and > 0.5 keV and 5–15 keV electron energies, with the electron vertex located up to 3 mm from the NR track origin. An entry of "0" indicates that the process cannot occur in the ROI, while " ≈ 0 " denotes a negligible rate of $\ll 0.01$ events per million recoils. Individual background components and topologies are discussed in the text. Signal rates are those from Table 1 for contained tracks above threshold, normalised per million signal-inducing events.

C	T1	Topology		D-D neutrons		D-T neutrons	
Component	Topology			$5-15~\mathrm{keV}$	> 0.5	$5-15~\mathrm{keV}$	
Recoil-induced δ -rays	Delta electron from NR track origin			0	541,000	0	
Particle-Induced X-ray Emission (PIX	E)						
X-ray emission	Photoelec	Photoelectron near NR track origin			365	0	
Auger electrons	Auger elec	Auger electron from NR track origin			42,000	0	
Bremsstrahlung processes [†]							
Quasi-Free Electron B	0.0	0.01	0.02		~.0		
Secondary Electron B	0.2	0.01	0.03		≈ 0		
Atomic Br. (AB)	0	0	~ 0		~.0		
Nuclear Br. (NB)	0	U	\approx 0		\approx 0		
Photon interactions		0.5			O.E		
Neutron inelastic γ -ra		0.5	_		0.5		
Random track coincidence		0.00			0.75		
Gas radioactivity		0.98			0.75		
Trace contaminants		20.0			04.0		
Neutron activation		32.6			84.2		
Secondary nuclear recoil fo							
Total background						10	
Migdal signal						TO	

Henrique Araújo (Imperial)

Status

- Main items built, testing/optimising in the lab now
 - PMT, GEMs, camera working; ITO anode next, + DAQ integration
- Commissioning at the neutron facility coming soon
 - Collimators and shielding designed and built
 - Awaiting final commissioning of generators
- Ramping up data analysis
- A taster: Fe-55 (5.9 keV) X-ray interactions (50 Torr): very preliminary data, first GEM testing
 - Demonstration that we can identify electrons at the 5-keV threshold Energy measurement improving, head-tail ID very clear
 - Soon adding depth coordinate with ITO + PMT
 - Coming up, dynamic range testing with Cf-252 fission fragments

Henrique Araújo (Imperial)

IDM 2022

Status

- Main items built, testing/optimising in the lab now
 - PMT, GEMs, camera working; ITO anode next, + DAQ integration
- Commissioning at the neutron facility coming soon
 - Collimators and shielding designed and built
 - Awaiting final commissioning of generators
- Ramping up data analysis
- A taster: Fe-55 (5.9 keV) X-ray interactions (50 Torr): very preliminary data, first GEM testing
 - Demonstration that we can identify electrons at the 5-keV threshold Energy measurement improving, head-tail ID very clear
 - Soon adding depth coordinate with ITO + PMT
 - Coming up, dynamic range testing with Cf-252 fission fragments

13

Conclusions

- The MIGDAL experiment aims to make a conclusive detection of the Migdal effect, followed by a systematic study: first in pure CF_{4} , then in other gases and mixtures
- Design/sensitivity study completed (2207.08284), suggesting 5σ discovery with 1 day
- Optical-TPC has been built, now being commissioned/optimised: 5 keV threshold met
- The neutron facility is ready, awaiting final generator commissioning

Funding:

MIGDAL collaboration: U. Autónoma Madrid, U. Birmingham, GDD Group/CERN, U. Helsinki, Imperial College London, King's College London, LIP-Coimbra, U. New Mexico, U. Oxford, Royal Holloway, Rutherford Appleton Laboratory, U. Sheffield (https://migdal.pp.rl.ac.uk/)

Reserve slides

D-T deployment: shield & collimator

Collimators & shielding

ER and NR tracks in 50 Torr CF₄

Figure 2: Left – Track length in CF₄ at 50 Torr for electrons (mean projected range calculated with Degrad [46], CSDA range with ESTAR [49], and the practical range formula from Ref. [50]), and mean projected range for carbon and fluorine ions from SRIM [47]). Right – Electronic and nuclear energy loss rates (CSDA) along carbon and fluorine ion tracks in CF₄ at 50 Torr, calculated with SRIM and electronic energy loss for 20 keV electrons obtained with ESTAR; called out values are interim particle energies (in keV) remaining at that point in the track.

Electron transport in 50 Torr CF₄

Figure 17: Electron transport properties of CF₄ at 50 Torr. Left – Drift velocity and diffusion. Right – Attachment and Townsend coefficients. Nominal fields in the drift (D), transfer (T) and induction (I) regions are indicated.

Secondary nuclear recoils

Secondary recoils per million primary ions (TRIM) created within 1 mm from the vertex in 50 Torr CF₄, when the "visible" energy of the secondary is 5–15 keV_{ee}

Primary ion	Secondary ion		
Fluorine	Fluorine	Carbon	
500 keV	22,310	4,800	
400	26,840	5,930	
300	36,640	7,640	
200	56,130	1,263	
170	67,040	1,418	
Carbon	Fluorine	Carbon	
500 keV	6,250	1,210	
400	7,950	1,610	
300	11,380	2,310	
200	17,310	3,700	
130	26,120	5,770	

~70,000 per million (worst case) How many of these look like 5-15 keV electrons? Simulate several thousand more tracks using full chain, analyse image and recover track lengths (R₃)

Can cut down to ~0.5 per 70,000 secondaries, retaining 85% electron detection efficiency (i.e. ~0.5 per million primary recoils)

Migdal in other elements

Migdal probabilities in other elements of interest for DM searches which we aim to explore, mostly in mixtures with CF₄

These probabilities are not too dissimilar (except for He)

Neutron scattering cross sections – total (σ_0) and bare-recoil processes (σ_s) plus Migdal probabilities for full neutron-induced NR spectrum, integrated down to zero NR threshold for electron thresholds of 0.5 keV and 5 keV (see C. McCabe's talk)

	2.47 MeV (D-D)			14.7 MeV (D-T)				
	σ_0 , mb	σ_s , mb	P(>0.5 keV)	P(>5 keV)	σ_0 , mb	σ_s , mb	P(>0.5 keV)	P(>5 keV)
⁴ He	3,239	3,239	2.98×10^{-3}	4.29×10^{-7}	1,017	1,017	9.01×10^{-2}	2.48×10^{-6}
$^{12}\mathrm{C}$	1,613	1,613	6.01×10^{-3}	$1.45\!\times\! 10^{-5}$	1,379	1,321	$2.15\!\times\! 10^{-2}$	$4.09\!\times\! 10^{-5}$
$^{19}{ m F}$	3,038	3,038	2.81×10^{-3}	$2.01\!\times\! 10^{-5}$	1,786	1,272	9.95×10^{-3}	6.50×10^{-5}
$^{nat}\mathrm{Ne}$	2,474	2,465	2.62×10^{-3}	$2.32\!\times\! 10^{-5}$	1,677	1,055	8.50×10^{-3}	6.89×10^{-5}
$^{nat}\mathrm{Si}$	3,111	3,111	$2.39\!\times\! 10^{-3}$	$2.87\!\times\! 10^{-5}$	1,725	1,150	$1.10\!\times\! 10^{-2}$	$1.25\!\times\! 10^{-4}$
$^{40}{ m Ar}$	5,050	5,050	2.18×10^{-3}	$2.92\!\times\! 10^{-5}$	2,818	2,754	6.85×10^{-3}	8.94×10^{-5}
$^{nat}\mathrm{Ge}$	3,401	3,401	1.64×10^{-3}	$2.46\!\times\! 10^{-5}$	3,227	3,130	5.47×10^{-3}	8.12×10^{-5}
$^{nat}{ m Kr}$	3,825	3,825	1.56×10^{-3}	$2.37\!\times\! 10^{-5}$	3,741	3,717	$4.65\!\times\!10^{-3}$	$7.03\!\times\!10^{-5}$
$^{nat}\mathrm{Xe}$	5,760	5,760	7.31×10^{-4}	$1.55\!\times\! 10^{-5}$	4,871	4,861	2.80×10^{-3}	5.95×10^{-5}

Energy-angle relations for D-D neutron scattering in 50% Ar/CF₄.

Blessing or curse? Auger emission in addition to Migdal electron