Pulsars Do Not Produce Sharp Features in the Local Cosmic-Ray Electron and **Positron Spectra**

Isabelle John isabelle.john@fysik.su.se

I. John & T. Linden arXiv:2206.04699

> IDM Vienna 21 July 2022

Local Cosmic-Ray Positron Flux

- Measured up to ~ 1 TeV
- Rises above ~ 20 GeV
- Spectrum is very smooth

Components of the Positron Flux

Positron Spectrum of Individual Pulsars

Template System: Geminga

- Middle-aged (~370 000 years)
- Nearby (~250 pc)

Recent Papers Predict Sharp Features for Individual Pulsars 103

Hooper et al., arXiv:1702.08436

Orusa et al., arXiv:2107.06300

Cholis & Krommydas, arXiv:2111.05864

Huang et al., arXiv:1712.00005

Sharp Spectral Features?

- AMS positron flux is very smooth
- Annihilating dark matter could produce sharp spectral features as well

Dark Matter Annihilation

Spectral Features From Pulsars

- 2. High-energy positrons lose energy faster than low-energy positrons:
- To synchrotron radiation in magnetic fields
- To inverse-Compton scattering on ISRF photons

IDM Vienna 2022

1. Large fraction of positrons are produced when pulsar is very young

3. These initial positrons build up sharp feature in positron spectrum over time

Cooling Mechanisms

As positrons propagate through the Galaxy, they cool:

- Energy losses to synchrotron radiation in magnetic fields
- Energy losses to inverse-Compton scattering on ambient photons (Interstellar Radiation Field)
- Energy loss rate:

$$\frac{dE}{dt} = -\frac{4}{3}\sigma_T \left(\frac{E}{m_e}\right)^2 \left[\rho_B + \sum_i \rho_i(\nu_i)S(\nu_i)\right]$$

- Analytic approximations treat ICS as a continuous process •
- But ICS is a stochastic process with catastrophic energy losses •
 - Each positron only interacts with small number of photons
 - Energy transfer in each interaction differs greatly

IDM Vienna 2022

Inverse Compton Scattering

Interstellar Radiation Field:

- CMB photons
- **IR** radiation
- Starlight
- UV radiation
- E Electron energy
- \mathcal{V}_i Photon energy
- σ_T Thomson cross section
- ρ_{B} Magnetic field energy density
- ρ_i ISRF energy densities
- S Klein-Nishina suppression

Stochastic Inverse-Compton Scattering Model

- Create positron with some initial energy 1.
- **Evolve in time steps** 2.
 - Calculate synchrotron energy losses
 - Based on positron and photon energy, determine if ICS happens and at what photon energy •
 - If ICS: Calculate energy loss and new positron energy
- Repeat until current pulsar age is reached 3.

Stochasticity of Inverse-Compton Scattering

- Analytic calculation:
 - All positrons are treated the same way, cool down to exactly the same energy

- Stochastic ICS:
 - ICS interactions are rare (~120 interactions in 370 kyr)
 - Catastrophic energy losses (~10-100% of energy lost)
 - ~30% spread in final positron energy distribution

Stochasticity of Inverse-Compton Scattering

- Analytic calculation:
 - All positrons are treated the same way, cool down to exactly the same energy

- Stochastic ICS:
 - ICS interactions are rare (~120 interactions in 370 kyr)
 - Catastrophic energy losses (~10-100% of energy lost)
 - ~30% spread in final positron energy distribution

Positron Spectrum of Individual Pulsars

correctly treating inverse-Compton scattering stochastically

IDM Vienna 2022

Sharp spectral features introduced by analytic approximation are smoothened out by ~50% when

Implications for Pulsar Models

- Pulsars do not produce sharp features
- Loosens constraints on pulsars
- Recent papers that fit pulsars to the positron data require large number of pulsars to wash out sharp features: Possibly only smaller number of pulsars needed to fit AMS-02 positron flux

Orusa et al., arXiv:2107.06300

IDM Vienna 2022

Cholis & Krommydas, arXiv:2111.05864

Implications for Dark Matter

- dark matter mass

• Dark matter particles annihilating into leptonic final states produce sharp spectral features at

Constraints on Dark Matter Models from Cosmic-Ray Positrons

I. John & T. Linden, arXiv:2107.10261

Aim: Model dark matter contribution to local cosmic-ray positron flux to constrain leptophilic dark matter

Pulsar model

- Spectrum: Hooper et al. arXiv:0810.1527
- **Distribution: Lorimer et al.** Mon. Not. Roy. Astron. Soc.372, 777

Simulation of cosmic-ray propagation using Galprop with many free parameters

> Fitting recent AMS-02 data for positrons, protons and Helium

Astrophysical Background Model

New solar modulation model: time-, charge- and rigiditydependent model (Cholis et al. arXiv:2007.00669)

Constraints on Dark Matter Models from Cosmic-Ray Positrons

Background model fits data to within a few percent (reduced $\chi^2 \sim 0.88$)

IDM Vienna 2022

arXiv:2107.10261

Add dark matter contributions to background model

Constraints on Dark Matter Models from Cosmic-Ray Positrons

- Four leptonic final states:
 - $\chi\chi \to \tau^+\tau^-$
 - $\chi\chi \rightarrow \mu^+\mu^-$
 - $\chi\chi \to e^+e^-$
 - $\chi\chi \to \phi\phi \to e^+e^-e^+e^-$, where ϕ is a light mediator
- Strongest constraints for e^+e^- at $m_{DM} = 12 \text{ GeV}$ and $\langle \sigma v \rangle = 2.5 \times 10^{-29} \text{ cm}^3/\text{s},$ significantly below thermal cross section

arXiv:2107.10261

Summary

We have proven that pulsars cannot produce sharp spectral features when inverse-Compton scattering is treated correctly stochastically.

> This makes dark matter the only known potential source of sharp spectral features.

Cosmic-ray positrons strongly constrain models of dark matter annihilation into leptonic final states.

Supplementary Slides

Stochastic Inverse-Compton Scattering

Number of ICS interactions

IDM Vienna 2022

20

Stochastic Inverse-Compton Scattering

Analytic Approximation Average of Stochastic ICS Stochastic ICS $\pm 1\sigma$ Stochastic ICS $\pm 2\sigma$

Spectral Feature is Independent of Diffusion

Astrophysical Background Model

Positrons: Reduced $\chi^2 = 0.88$ **Degrees of Freedom: 49**

Protons: Reduced $\chi^2 = 0.43$ **Degrees of Freedom: 49**

Helium: Reduced $\chi^2 = 0.57$ **Degrees of Freedom: 43**

Total: Reduced $\chi^2 = 0.63$, Degrees of Freedom: 141

Effect of Dark Matter Halo Height

 $z = 5.6 \, \text{kpc}$

$$z = 3 \text{ kpc}$$

List of Free Parameters for Background Model

Parameter

Diffusion coefficient, D_0 [cm²/s] Diffusion spectrum break, D_{break} Spectral index below break, δ_1 Spectral index above break, δ_2 Convection velocity, v_c [km/(s kp Alfvén velocity, v_{Alfvén} [km/s] Proton injection spectrum break Proton spectral index below brea Proton spectral index above brea Pulsar spectral index, γ_{psr} Pulsar cutoff energy, E_{cut}^{psr} [GeV] Pulsar formation rate, N_{100} [psr/ Solar modulation parameter, ϕ_0 Solar modulation parameter, ϕ_1 Normalization (positrons, protons Helium injection spectrum break Helium spectral index below brea Helium spectral index above brea Normalization (Helium)

	Best fit	Uncertainty
	1.636 ·10 ²⁸	2.786 ·10 ²⁵
[MV]	6.067 ·10 ³	0.339 ·10 ³
	0.0527	6.489 ·10 ⁻⁶
	0.361	$0.138 \cdot 10^{-2}$
(pc)]	6.345	$9.41 \cdot 10^{-4}$
	4.524	2.643 ·10 ⁻³
[MV]	5.195·10 ²	2.542
ak, $\gamma_1^{ar{p}}$	1.657	0.824
ak, $\gamma_2^{\bar{p}}$	2.523	$2.719 \cdot 10^{-4}$
2	1.337	$3.082 \cdot 10^{-2}$
	535.587	17.998
/century]	0.0930	0.00128
[GV]	0.378	0.229 ·10 ⁻²
[GV]	1.950	0.558
is)	0.815	$0.178 \cdot 10^{-2}$
[MV]	$305.303 \cdot 10^3$	$56.095 \cdot 10^3$
ak, $\gamma_1^{ extsf{He}}$	2.505	$2.917 \cdot 10^{-3}$
ak, γ_2^{He}	2.425	$1.638 \cdot 10^{-2}$
· 2	1.100	$3.866 \cdot 10^{-3}$

