Pulsars Do Not Produce Sharp Features in the Local Cosmic-Ray Electron and Positron Spectra

I. John & T. Linden arXiv:2206.04699

Isabelle John isabelle.john@fysik.su.se

IDM Vienna 21 July 2022

Local Cosmic-Ray Positron Flux

- Measured up to ~ 1 TeV
- Rises above ~ 20 GeV
- Spectrum is very smooth

Components of the Positron Flux

- Middle-aged (~370 000 years)
- Nearby (~250 pc)

Positron Spectrum of Individual Pulsars

Template System: Geminga

Recent Papers Predict Sharp Features for Individual Pulsars

Hooper et al., arXiv:1702.08436

Huang et al., arXiv:1712.00005

Orusa et al., arXiv:2107.06300

Cholis & Krommydas, arXiv:2111.05864

IDM Vienna 2022 5

Sharp Spectral Features?

- AMS positron flux is very smooth
- Annihilating dark matter could produce sharp spectral features as well

Dark Matter Annihilation

 $\overline{\chi}$

 $\overline{\chi}$

Spectral Features From Pulsars

1. Large fraction of positrons are produced when pulsar is very young

- 2. High-energy positrons lose energy faster than low-energy positrons:
- To synchrotron radiation in magnetic fields
- To inverse-Compton scattering on ISRF photons

IDM Vienna 2022 **ISAbelle John** Vienna 2022 **ISAbelle John**

3. These initial positrons build up sharp feature in positron spectrum over time

Cooling Mechanisms

As positrons propagate through the Galaxy, they cool:

- Energy losses to synchrotron radiation in magnetic fields
- Energy losses to inverse-Compton scattering on ambient photons (Interstellar Radiation Field)
- Energy loss rate:

- CMB photons
- **IR** radiation
- Starlight
- UV radiation
- \boldsymbol{E} Electron energy
- Photon energy *νi*
- σ_{T} Thomson cross section
- Magnetic field energy density ρ_B
- ISRF energy densities *ρi*
- S Klein-Nishina suppression

$$
\frac{dE}{dt} = -\frac{4}{3}\sigma_T \left(\frac{E}{m_e}\right)^2 \left[\rho_B \right] \left(\sum_i \rho_i(\nu_i) S(\nu_i)\right)
$$

Interstellar Radiation Field:

- Analytic approximations treat ICS as a continuous process
- But ICS is a stochastic process with catastrophic energy losses
	- Each positron only interacts with small number of photons
	- Energy transfer in each interaction differs greatly

Inverse Compton Scattering

Stochastic Inverse-Compton Scattering Model

- 1. Create positron with some initial energy
- 2. Evolve in time steps
	- Calculate synchrotron energy losses
	- Based on positron and photon energy, determine if ICS happens and at what photon energy
	- If ICS: Calculate energy loss and new positron energy
- 3. Repeat until current pulsar age is reached

1200 80 energy [GeV] $1000 800$ electron $600 -$ Final $E_0 = 10$ TeV, t = 370 kyr $400 -$ 50 60 70 Average loss per ICS interaction [GeV]

Stochasticity of Inverse-Compton Scattering

- Stochastic ICS:
	- ICS interactions are rare (~120 interactions in 370 kyr)
	- Catastrophic energy losses (~10-100% of energy lost)
	- ~30% spread in final positron energy distribution
- Analytic calculation:
	- All positrons are treated the same way, cool down to exactly the same energy

Stochasticity of Inverse-Compton Scattering

- Stochastic ICS:
	- ICS interactions are rare (~120 interactions in 370 kyr)
	- Catastrophic energy losses (~10-100% of energy lost)
	- ~30% spread in final positron energy distribution

- Analytic calculation:
	- All positrons are treated the same way, cool down to exactly the same energy

• Sharp spectral features introduced by analytic approximation are smoothened out by ~50% when

Positron Spectrum of Individual Pulsars

correctly treating inverse-Compton scattering stochastically

- Pulsars do not produce sharp features
- Loosens constraints on pulsars
- Recent papers that fit pulsars to the positron data require large number of pulsars to wash out sharp features: Possibly only smaller number of pulsars needed to fit AMS-02 positron flux

IDM Vienna 2022 **ISAbelle John** Vienna 2022 **ISAbelle John**

Implications for Pulsar Models

Orusa et al., arXiv:2107.06300 Cholis & Krommydas, arXiv:2111.05864

Implications for Dark Matter

- dark matter mass
-

• Dark matter particles annihilating into leptonic final states produce sharp spectral features at

• Dark matter is the only known astrophysical mechanism that produces sharp spectral features

Constraints on Dark Matter Models from Cosmic-Ray Positrons

I. John & T. Linden, arXiv:2107.10261

Aim: Model dark matter contribution to local cosmic-ray positron flux to constrain leptophilic dark matter

Soc.372, 777 | Fitting recent AMS-02 data for positrons, protons and Helium

Simulation of cosmic-ray propagation using Galprop with many free parameters

Astrophysical Background Model

Pulsar model

- Spectrum: Hooper et al. arXiv:0810.1527
- Distribution: Lorimer et al. Mon. Not. Roy. Astron.

New solar modulation model: time-, charge- and rigiditydependent model (Cholis et al. arXiv:2007.00669)

Constraints on Dark Matter Models from Cosmic-Ray Positrons

Background model fits data to within a few percent $\left(\text{reduced }\chi^{2}\sim0.88\right)$

IDM Vienna 2022 **ISAbelle John**

arXiv:2107.10261

Add dark matter contributions to background model

- Four leptonic final states:
	- $\chi\chi\rightarrow\tau^{+}\tau^{-}$
	- $\chi\chi\rightarrow\mu^{+}\mu^{-}$
	- $\chi\chi \rightarrow e^+e^-$
	- $\chi \chi \rightarrow \phi \phi \rightarrow e^+e^-e^+e^-$, where ϕ is a light mediator
- Strongest constraints for e^+e^- at $m_{DM}^{}=12$ GeV and $\langle \sigma v \rangle = 2.5 \times 10^{-29}$ cm³/s, significantly below thermal cross section

Constraints on Dark Matter Models from Cosmic-Ray Positrons

arXiv:2107.10261

Cosmic-ray positrons strongly constrain models of dark matter annihilation into leptonic final states.

Summary

We have proven that pulsars cannot produce sharp spectral features when inverse-Compton scattering is treated correctly stochastically.

This makes dark matter the only known potential source of sharp spectral features.

Supplementary Slides

IDM Vienna 2022 19

Stochastic Inverse-Compton Scattering

Stochastic Inverse-Compton Scattering

IDM Vienna 2022 and 2022 **ISAbelle John** Vienna 2022 **ISAbelle John** Vienna 2022 **ISAbelle John**

Analytic Approximation Average of Stochastic ICS Stochastic ICS $\pm 1\sigma$ Stochastic ICS $\pm 2\sigma$

Spectral Feature is Independent of Diffusion

IDM Vienna 2022 Isabelle John

Astrophysical Background Model

Positrons: $\mathsf{Reduced}\ \chi^2=\mathsf{0.88}$ Degrees of Freedom: 49

Protons: $\mathsf{Reduced}\ \chi^2=\mathsf{0.43}$ Degrees of Freedom: 49

Helium: $\mathsf{Reduced}\ \chi^2=\mathsf{0.57}$ Degrees of Freedom: 43

Total: Reduced $\chi^2 = 0.63$, Degrees of Freedom: 141

Effect of Dark Matter Halo Height

 $z = 5.6$ kpc

IDM Vienna 2022 Isabelle John

$$
z = 3 \text{ kpc}
$$

List of Free Parameters for Background Model

Parameter

Diffusion coefficient, D_0 [cm²/s] Diffusion spectrum break, D_{break} Spectral index below break, δ_1 Spectral index above break, δ_2 Convection velocity, v_c [km/(s kp Alfvén velocity, $v_{\text{Alfvén}}$ [km/s] Proton injection spectrum break Proton spectral index below brea Proton spectral index above brea Pulsar spectral index, γ_{psr} Pulsar cutoff energy, $E_{\text{cut}}^{\text{psr}}$ [GeV] Pulsar formation rate, N_{100} [psr/ Solar modulation parameter, ϕ_0 Solar modulation parameter, ϕ_1 Normalization (positrons, protons Helium injection spectrum break Helium spectral index below brea Helium spectral index above brea Normalization (Helium)

