

First 100 eV nuclear recoil ionization yield measurement in silicon

Valentina Novati on behalf of the SuperCDMS collaboration

Nuclear recoil ionization

Detector response for ionization sensitive detectors is fundamental to assess sensitivity to nuclear recoils:

- weakly interacting massive particle (WIMP) scattering
- coherent elastic neutrino-nucleus scattering (CEvNS) interactions

Scattering measurement

The kinematics establishes neutron recoil energy (E_{rec}) as a function of the scattering angle (θ):

$$E_{\text{rec}} = 2E_{\text{n}} \frac{M_{\text{n}}^2}{(M_{\text{n}} + M_{\text{T}})^2} \left(\frac{M_{\text{T}}}{M_{\text{n}}} + \sin^2 \theta - \cos \theta \sqrt{\left(\frac{M_{\text{T}}}{M_{\text{n}}}\right)^2 - \sin^2 \theta} \right)$$

- E_n, neutron energy
- M_T and M_n, mass of the target and the neutron
- θ, scattering angle

Neutron tagging

Neutron tagging performed with EJ301/EJ309 liquid scintillators readout by PMTs 6 scattering angles measured:

- 3 "Lonewolf" detectors testing previously measured energies:
 0.75 keV, 2 keV, 3.87 keV
- a backing array, composed of two concentric rings, is set up at two different distances to test a total of 3 energies: 100 eV, 220 eV, 460 eV

Neutron production

Mono-energetic neutron beam from Triangle Universities Nuclear Laboratory - TUNL (North Carolina, US)

- 1.889 MeV Proton production with a pulsed Tandem beam (2.5 MHz)
- \circ 100-nm thick LiF-on-Ta target \rightarrow ∼56 keV low energy neutron beam
- Aim for ²⁸Si elastic scattering resonance at 55.7 keV

4

charge signals are amplified by the Neganov-Trofimov-Luke (NTL) effect

SuperCDMS HVeV detector:

SOUIDS

(~1.3K)

- operated at 52 mK in an Adiabatic Demagnetization Refrigerator (ADR)
- $(1 \times 1 \times 0.4)$ cm³ 0.93 g silicon crystal
- Transition-Edge Sensor (TES) readout

Readout board GGG heat sinking Detector Box (~300mK) (~50mK) Nb Can location

Energy to $E_{ph} = E_{rec} \left(1 + \frac{\mathbf{Y} \cdot \mathbf{e} \cdot \mathbf{V}}{\mathbf{E}} \right)$ produce a charge Ionization yield

R. Ren et al. Phys. Rev. D 104, 032010, 2021

 $0V \mod V = 0$:

Total phonon energy = Recoil energy

HV mode $V \neq 0$:

Total phonon energy = Recoil energy + NTL energy

s z യ പ

Silicon detector

SuperCDMS HVeV detector:

- operated at 52 mK in an Adiabatic
 Demagnetization Refrigerator (ADR)
- \circ (1 × 1 × 0.4) cm³ 0.93 g silicon crystal
- Transition-Edge Sensor (TES) readout

Single electron-hole-pair sensitivity

Acquired data

Data taking 2019:

- 3 weeks of beam data
- 50% duty cycle (ADR cycle)
- Two days at 0 V (Validation data)
- Calibration with 635-nm laser,
 ⁵⁵Fe and ⁵⁷Co source
- Beam data taken at 20, 100, and 180 V for exploring yield dependence on the electric field

Here: Present 0 V cross-check & 100 V nuclear recoil yield measurement

Geant4 signal simulations

Data selection

silicon detector + liquid scintillator with PMT data quality cuts

+

Time of flight between TUNL Beam Position Monitor and EJ301/EJ309 liquid scintillator with PMT

.

+

Time difference between Si HVeV detector and EJ301/EJ309 liquid scintillator with PMT

Strong background suppression Expect a very clean signal

0V data cross check

Before measuring the ionization yield with the HV data, two days of 0V data were used to check:

- the beam conditions
- the detector calibration
- the geometry reconstruction

The 0 V coincidence analysis does not provide new information on the ionization yield.

Background subtraction

SUPER CEDIMS
Cryogenic Dark Matter Search
TUNL
TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

Time difference between Si HVeV detector and PMT backing array

neutron-scatter signal off-beam Bkg (estimated from dt sidebands)

100 V Data Observe quantization!

Analysis scheme - Yield measurement

1 - Measurement: Total phonon energy spectrum for events coincident between HVeV and PMT

Geant4 simulation of recoil energy spectrum for events coincident between HVeV and PMT

3 - Fit:

Determine Y by fitting the E_{rec} simulation to the HV measurement of E_{ph}

Bayesian Analysis Toolkit

4 - Systematic Uncertainty:

- Coincidence timing window
- Time of flight window
- Neutron beam energy
- Detector energy calibration
- Impact ionization and charge trapping
- Fano factor

Nuclear recoil ionization – 1st iteration

Ionization yield analysis for ring detector with the following assumptions:

- o yield @ 0 eV = 0
- yield @ 10 keV and LWs = Y_{Chavarria}

13

Nuclear recoil ionization – 2nd iteration

Ionization yield analysis for ring array with the following assumptions:

- yield @ 0 eV = 0
- yield @ (100, 220, 460) eV as fit in the 1st iteration
- yield @ 10 keV = Y_{Chavarria}

Result: 3rd fit iteration

Nuclear recoil ionization

First ionization yield measurement in silicon down to 100 eV

- deviation from the Lindhard model
- no indication of an ionization production threshold down to 100 eV

Conclusions

- A silicon SuperCDMS HVeV detector was operated in a ~56 keV neutron beam at TUNL (North Carolina, US)
- The nuclear recoil ionization yield was measured in silicon at six different energies
- A nuclear recoil measurement in silicon down to
 100 eV was performed for the first time

Extra...

18

Lindhard theory and previous measurements

In 1963, Lindhard et al. published a theoretical study on damage effects caused by particle radiations in matter, which includes the expected ionization yield for the nuclear recoil.

Measurements down to 3-4 $\rm keV_{NR}$ are compatible with Lindhard et al.'s study, but more recent measurements suggest a suppressed yield at low energies

J.Lindhard, et al., Mat. Fys. Medd. Dan. Vid. Sels., 33, 10(1963)

Neutron to silicon cross section

56 keV neutron energy

Calibration

R. Ren et al., Phys. Rev. D 104, 032010, 2021

Calibration

R. Ren et al., Phys. Rev. D 104, 032010, 2021

Systematic uncertainties

