Neutron tagging with gadolinium loaded PMMA

Key points

- Large exposure
- Low energy threshold < 10 keV
- Low background rate < 0.1 ev in Rol (30-200 keVnr) with 200 t-y exposure
- Topology-based background discrimination: multi-scatter vs single scatter
- Pulse-shape based bkg discrimination (PSD) > 108

WIMP $\beta \sim 10^{-3}$

 $M_W\sim 100 GeV$

Key points

- The detector is based on an ultrapure liquid low radioactivity Argon (UAr) doublephase Time Projection Chamber (TPC): 50 t (20 t FV) of UAr
- TPC surrounded by a single phase LAr neutron veto detector
- Wavelength shifters: TPB in the TPC, PEN in the veto
- 21 m² of cryogenic SiPMs
- Integration of TPC and veto in a single object
- 99 t total UAr in a vessel

Key points

- Vessel contained in a 650 t of standard liquid Argon within a membrane cryostat (similar to Proto-Dune)
- Detector in Hall C, underground at LNGS (Italy)

DarkSide-20k Background mitigation

Source	Strategy & Tools
β/ γ	UAr, PSD, material selection,
Radon progeny	Surface cleaning, Rn suppressed air,
Radiogenic neutron, mostly (α, n)	Neutron veto, fiducialization, material selection,
Cosmogenic neutron	Muon veto,
Neutrino induced NRs	Irreducible (~3.2 ev in 200 t-y)

DarkSide-20k LAr and TPC technology

- Scintillation (S1): formation of excited Ar2* and decay short singlet state 6.7 ns long triplet state 1600 ns
- Electroluminescence (S2): drift of e- in electric field extraction in gas

DS50 Coll, Phys Rev D 98 (2018) 102006

DEAP Coll, Euro Phys J C 81 (2021)

DarkSide-20k Background mitigation

Background Electron recoil Nuclear recoil PSD How to overcome? How to overcome? Low ³⁹Ar content Active Veto detector Use of dual-phase TPC Strict materials selection • PSD Strict materials selection

Extraction of underground Ar (UAr, ³⁹Ar content equal to ~1/1400 with respect to atmospheric Ar)

Neutron tagging with veto

- Gd-PMMA is the chosen material for the neutron veto: 11.2 t needed
- The plastic has to survive at LAr temperature
- Gd-PMMA is highly efficient at moderating and then capturing neutrons
- The TPC barrel and the endcaps will be made of Gd-PMMA (4π coverage)
- The capture results in the emission of several γ s, with energy up to 7.9 MeV.

DarkSide-20k Neutron tagging with veto

- Gd concentration is chosen to have neutron capture on Gd dominates w.r.t. capture on H
- Neutron tagging = maximising the probability of neutron capture and detection of de-excitation γs
- Final thickness of the Gd-loaded parts will be 15 cm at room temperature
- Passive volumes reduced as much as possible

Reduced-thickness light sensor

Gd-loaded acrylic

Development of the hybrid material

The collaboration performed R&Ds in Italy, Russia and China.

- Promising results have been obtained with Gd_2O_3 , $Gd(acac)_3$, and $Gd(MAA)_3$.
- All of these compounds are satisfactory from the chemical and radiopurity points of view (the (α, n) process is a dangerous source of background)

Two approaches reached industrial production readiness:

- Gadolinium oxide nanograins (Gd₂O₃) mechanical dispersion in MMA
- Gd(MAA)₃ dispersion in the liquid monomer (MMA)

Gd₂O₃ in nano grains

R&D, purification & screening

- Gd₂O₃ is a stable and known compound commercially available
- Found vendor with radio pure oxide [3 batch assayed with HPGe @ LSC]
- Gd oxide is not soluble in the acrylic monomer -> mechanical dispersion of coated nanograins with surfactant to avoid sedimentation
- Surfactant showed non negligible ⁴⁰K contamination (3.19 10⁴ mBq/kg)
- Developed a surfactant purification procedure using an ionic exchange resin (reduction factor ~50) which makes surfactant presence negligible
- Obtained up to 21 cm thick lab scale sample with Gd₂O₃ concentration up to 2%

Gd2O3 Sample #	²³⁸ U [mBq/kg]	²³² Th [mBq/kg]	⁴⁰ K [mBq/kg]
1	13.6 ± 3.0	< 27	< 37
2	6.6 ± 1.8	< 19	< 23
3	2.68 ± 0.47	2.31 ± 0.68	< 13

Gd₂O₃ in nano grains

Industrial scaling

- Procedure transferred to an Italian company
- 250 kg of Gd-PMMA plastic produced: 12 cm thick sheets
- Gd uniformity of industrial samples is very good (95%), measured by calcination
- Material's properties extensively investigated

Gadolinium methacrylate Receipt and radiopurity

- Gd(MAA)₃ is a customised complex compound, derived from Gd₂O₃
- The compound is soluble in acrylic monomer -> Yangzhou University (Y.U.) developed a procedure to make a stable solution up to 10% Gd wt
- Procedure under NDA, technology transferred from Y.U. to DonChamp company for the DarkSide Gd-PMMA production
- DonChamp: previous experience in low background environments -> JUNO acrylic PMMA production
- Company made 5 cm thick samples and finalised the receipt for 17 cm thick panels (15 cm after machining)
- Radiopurity:
 - PMMA from DonChamp satisfies DarkSide requirements
 - Gd(MAA)₃ radiopurity depends on selecting pure Gd₂O₃

Pure PMMA measured at LGNS

Isotope	mBq/kg
137Cs	<0.025
40K	<0.41
232Th_228Ac	<0.14
232Th_228Th	<0.08
235U	<0.07
238U_226Ra	0.05
238U_234mPa	<1.8

Gd(MAA)₃ doped acrylic sheet (5 cm thick)

Gadolinium methacrylate

Logistics

Reaction kettles at YU for the Gd(MAA)₃ production

- Production of Gd(MAA)₃ from pure Gd₂O₃
 at YU
- Transport of radiopure MMA from the company to the university labs.
- Dissolve Gd(MAA)₃ into MMA 10%_w
- Transport Gd-doped MMA back to the company infrastructure in controlled environment
- Dilute with pure MMA to get 1%_w
- Polymerisation
- Machining
- Onsite cleaning

R&Ds conclusions

- DarkSide-20k design foresees an integrated design of TPC and neutron veto
- Hydrogen-rich TPC walls act as neutron moderator, gadolinium presence in the material enhance detection capability
- This design has led to the development of hybrid plastic materials loaded with gadolinium
- The background requirements of the experiment apply stringent limits on the material radiopurity
- Different strategies have been investigated
- Two techniques have been scaled to industrial level production, one has been selected for the usage in DarkSide-20k

Thank you for your attention!

For further informations: caminata@ge.infn.it

More about DarkSide@ IDM 2022

- Search for low mass WIMP dark matter with DarkSide-50
 M. Kimura 19 July 2022 17:30 EI7
- The DarkSide-20k TPC and underground argon cryogenic system
 T. Thorpe 19 July 2022 14:40 EI9

