Searching for neutrons conversions and baryon number violation at the ESS with the HIBEAM/NNBAR experiment D. Milstead Stockholm University - Why look for neutron oscillations? - How to look for neutron oscillations - Nnbar and HIBEAM at the ESS #### Neutron conversions and baryon number violation - Baryon number "accidental" symmetry in the Standard Model - Baryon number violation - BNV generic features of SM extensions - Sakharov condition for baryogenesis - Neutron conversions - "Pure" BNV ($\Delta B \neq 0$, $\Delta L = 0$) - Free $n \to \bar{n} \ (\Delta B = 2)$ - Post-sphaleron baryogenesis - SUSY, extra dimensions - LR unification models - Symbiosis with $0v2\beta$ decay ($\Delta L = 2$) - $-n \rightarrow n' (\Delta B = 1), n \rightarrow n' \rightarrow \bar{n} (\Delta B = 2)$ - quasi-stable uncharged particle can mix with a dark sector - cogenesis scenarios - mirror matter # Ingredients for searches for neutron conversions - A copious source of neutrons - Control of fields in which the neutrons propagate - Long beamlines to give the neutrons time to convert ## A copious source of neutrons: the European Spallation Source High intensity spallation neutron source Multidisplinary research centre with 17 European nations participating. Lund, Sweden. Start operations in 2026/2027. 2 GeV protons (3ms long pulse, 14 Hz) hit rotating tungsten target. Cold neutrons after interaction with moderators. $\sim 10^{12-13} \, \text{n/s}$. #### Control of fields in which the neutrons propagate Eg Free $n \rightarrow \bar{n}$ state $$\Psi = \binom{n}{\bar{n}}$$ $$H = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\overline{n}} \end{pmatrix}$$ $H = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\overline{n}} \end{pmatrix} \qquad \varepsilon = \text{mixing mass term}$ Probability to find an antineutron at time t is given by $$P_{n\bar{n}}(t) = \frac{\varepsilon_{n\bar{n}}^2}{(\Delta E/2)^2 + \varepsilon_{n\bar{n}}^2} \sin^2\left[t\sqrt{(\Delta E/2)^2 + \varepsilon_{n\bar{n}}^2}\right] e^{-t/\tau_n},$$ $\Delta E = E_n - E_{\overline{n}}$ Require degeneracy between n, \overline{n} \Rightarrow Zero magnetic field (<10⁻⁵ G) Similarly for $n \to n'$ Magnetic field in dark sector ⇒ Scan for -1G <B<+1G in ~mG steps ## Beamlines and program R&D Annihilation detector prototype Conceptual design reports for HIBEAM/NNBAR TDR Small scale experiments at ESS test beamline 2024 2028 HIBEAM High precision $n \to n'$ (x10 improvement) Low sensitivity free $n \to \bar{n}$ NNBAR High sensitivity free $n \to \overline{n}$ (x1000 improvement) >2028 >2030 #### Search for sterile neutron oscillations at HIBEAM Complementary suite of searches to constrain mixing Hamiltonian $$\hat{\mathscr{H}} = \left(egin{array}{cccc} m_n + ec{\mu}_n ec{B} & arepsilon_{nar{n}} & lpha_{nn'} & lpha_{nar{n}'} \ arepsilon_{nar{n}} & m_n - ec{\mu}_n ec{B} & lpha_{nar{n}'} & lpha_{nn'} \ lpha_{nn'} & lpha_{nar{n}'} & m_{n'} + ec{\mu}_{n'} ec{B}' & arepsilon_{nar{n}} \ lpha_{nar{n}'} & lpha_{nn'} & arepsilon_{nar{n}} & m_{n'} - ec{\mu}_{n'} ec{B}' \end{array} ight)$$ design Investigations of different designs ongoing Beamline of ANNI Neutron speed Sensitivity #### Annihilation detector Signal: 1-2 GeV c.o.m. energy , 4-7 pions Prototype under construction: arXiv:2107.02147 [physics.ins-det]. For HIBEAM stage can also borrow existing detector, eg WASA detector #### Geant-4 detector simulation Geant 4 model designed and reproducing well expected distributions #### A Computing and Detector Simulation Framework for the HIBEAM/NNBAR Experimental Program at the ESS Joshua Barrow^{10,11}, Gustaaf Brooijmans², José Ignacio Marquez Damian³, Douglas DiJulio³, Katherine Dunne⁴, Elena Golubeva⁵, Yuri Kamyshkov¹, Thomas Kittelmann³, Esben Klinkby⁸, Zsófi Kókai³, Jan Makkinje², Bernhard Meirose^{4,6,*}, David Milstead⁴, André Nepomuceno⁷, Anders Oskarsson⁶, Kemal Ramic³, Nicola Rizzi⁸, Valentina Santoro³, Samuel Silverstein⁴, Alan Takibayev³, Richard Wagner⁹, Sze-Chun Yiu⁴, Luca Zanini³, and Symmetry 14 (2022) 1, 76 #### **NNBAR Experiment** ## Optics and magnetic shielding Nested Reflector McStas simulation Sensitivity per year ~"250 ILL units" Outer + inner octagon shield from mu-metal Round steel vacuum chamber: between shields **COMSOL** simulations <10 nT #### Ongoing and planned activities - Annihilation detector prototypes - Further developments of optics, magnetics, and moderator designs - Background campaign - Shielding designs using Comblayer - High energy spallation backgrounds, Cosmics, Gamma bg from activation, delayed beta decays, skyshine - Zero bg experiment at the ILL (1990's) - · Aim to reproduce this. #### HIBEAM/NNBAR - Developed from an Expression of Interest for a $n \to \bar{n}$ at the ESS (2015). Signatories from 26 institutes , 8 countries. - Developed into multi-stage HIBEAM/NNBAR - Major effort SV,FR,DK,DE,US - Co-spokespersons G. Brooijmans (Columbia), D. Milstead (Stockholm) - Lead scientist (Y. Kamyshkov, Tennessee) - Technical Coordinator (V. Santoro, ESS) - HIBEAM is supported by the Swedish Research Council (1.4MEuro) from the Swedish Research Council - NNBAR is supported as part of a 3MEuro H2020 for an upgraded ESS with a new lower moderator New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the European Spallation Source A. Addazi^{h,at}, K. Anderson^{aq}, S. Ansell^{bm}, K. S. Babu^{az}, J. Barrow^w D. V. Baxterde, P. M. Bentleyac, Z. Berezhianibl, R. Bevilacquac, R. Biondib, C. Bohm^{ba}, G. Brooijmans^{an}, L. J. Broussard^{aq}, B. Dev^{ay}, C. Crawford^z A. D. Dolgovai, A. Dunneba, P. Fierlingero, M. R. Fitzsimmonsw, A. Fomina, M. Frost^{aq}, S. Gardiner^c, S. Gardner^z, A. Galindo-Uribarri^{aq}, P. Geltenbort^p S. Girmohanta^{bb}, E. Golubeva^{ah}, G. L. Greene^w, T. Greenshaw^{aa}, V. Gudkov^k R. Hall-Wilton^{ac}, L. Heilbronn^x, J. Herrero-Garcia^{be}, G. Ichikawa^{bf}, T. M. Ito^{ab} E. Iverson^{aq}, T. Johansson^{bg}, L. Jönsson^{ad}, Y-J. Jwa^{an}, Y. Kamyshkov^w K. Kanaki^{ac}, E. Kearns^g, B. Kerbikov^{al,aj,ak}, M. Kitaguchi^{ap}, T. Kittelmann^{ac} E. Klinkby^{ae}, A. Kobakhidze^{bl}, L. W. Koerner^s, B. Kopeliovich^{bi}, A. Kozela^y V. Kudryavtsev^{ax}, A. Kupsc^{bg}, Y. Lee^{ac}, M. Lindroos^{ac}, J. Makkinje^{an} J. I. Marquezac, B. Meiroseba, T. M. Millerac, D. Milsteadba, R. N. Mohapatraj, T. Morishimaap, G. Muhrerac, H. P. Mumm, K. Nagamotoap, F. Nesti¹, V. V. Nesvizhevsky^p, T. Nilsson^r, A. Oskarsson^{ad}, E. Paryev^{ah} R. W. Pattie, Jr. Jr. S. Penttilä^{aq}, Y. N. Pokotilovski^{am}, I. Potashnikova^{bi} C. Redding^x, J-M. Richard^{bj}, D. Ries^{af}, E. Rinaldi^{au,bc}, N. Rossi^b, A. Ruggles^x B. Rybolt^u, V. Santoro^{ac}, U. Sarkar^v, A. Saunders^{ab}, G. Senjanovic^{bd,bn} A. P. Serebrovⁿ, H. M. Shimizu^{ap}, R. Shrock^{bb}, S. Silverstein^{ba}, D. Silvermyr^{ad} W. M. Snow^{d,e,f}, A. Takibayev^{ac}, I. Tkachev^{ah}, L. Townsend^x, A. Tureanu^q L. Varrianoi, A. Vainshteinag, J. de Vriesa, R. Woracekac, Y. Yamagatabk. A. R. Young^{as}, L. Zanini^{ac}, Z. Zhang^{ar}, O. Zimmer^p ^aAmherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA, USA ^bINFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi AQ, Italy ^cFermi National Accelerator Laboratory, Batavia, IL 60510-5011, USA ^dDepartment of Physics, Indiana University, 727 E. Third St., Bloomington, IN, USA, 47405 ^eIndiana University Center for Exploration of Energy & Matter, Bloomington, IN 47408, USA ^fIndiana University Quantum Science and Engineering Center, Bloomington, IN 47408, USA ^gDepartment of Physics, Boston University, Boston, MA 02215, USA ^hCenter for Theoretical Physics, College of Physics Science and Technology, Sichuan University, 610065 Chengdu, China - Pre-CDR white paper: *J. Phys. G* 48 (2021) 7, 070501 See also: - Proc AccApp 21 (arXiv: 2204.04051 [physics.ins-det)) - Symmetry 14 (2022) 1,76 - Proc vCHEP2021, *EPJ Web Conf.* 251 (2021) 02062, Arxiv: 2106.15898 [physics.ins-det]) ### Summary - Baryon number violation not occurring in Nature would be the surprise - Conversion of beam neutrons to sterile neutrons and/or antineutrons is a high sensitivity and clean means of searching for $\Delta B = 1,2$ with other hitherto conserved quantities unviolated. - The ESS opens a new discovery window - Sensitivity improvements of x10 $(n \to n')$ and x1000 $(n \to \overline{n})$ possible. - Multistage program of HIBEAM/NNBAR planned - Cross-disciplinary community neutronics, magnetics, detector specialists - Support from Swedish and EU funding agencies - Next step CDR's! - Much to do and more collaborators are always welcome!!