
Searching for neutrons conversions and baryon number violation at the ESS with the HIBEAM/NNBAR experiment

D. Milstead Stockholm University

- Why look for neutron oscillations?
- How to look for neutron oscillations
- Nnbar and HIBEAM at the ESS

Neutron conversions and baryon number violation

- Baryon number "accidental" symmetry in the Standard Model
- Baryon number violation
 - BNV generic features of SM extensions
 - Sakharov condition for baryogenesis
- Neutron conversions
 - "Pure" BNV ($\Delta B \neq 0$, $\Delta L = 0$)
 - Free $n \to \bar{n} \ (\Delta B = 2)$
 - Post-sphaleron baryogenesis
 - SUSY, extra dimensions
 - LR unification models
 - Symbiosis with $0v2\beta$ decay ($\Delta L = 2$)
 - $-n \rightarrow n' (\Delta B = 1), n \rightarrow n' \rightarrow \bar{n} (\Delta B = 2)$
 - quasi-stable uncharged particle can mix with a dark sector
 - cogenesis scenarios
 - mirror matter

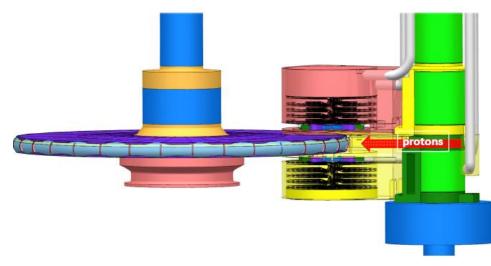
Ingredients for searches for neutron conversions

- A copious source of neutrons
- Control of fields in which the neutrons propagate
- Long beamlines to give the neutrons time to convert

A copious source of neutrons: the European Spallation Source

High intensity spallation neutron source

Multidisplinary research centre with 17 European nations participating.


Lund, Sweden.
Start operations in 2026/2027.

2 GeV protons (3ms long pulse, 14 Hz) hit rotating tungsten target.

Cold neutrons after interaction with moderators.

 $\sim 10^{12-13} \, \text{n/s}$.

Control of fields in which the neutrons propagate

Eg Free $n \rightarrow \bar{n}$ state

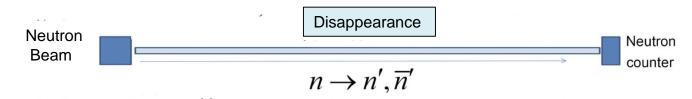
$$\Psi = \binom{n}{\bar{n}}$$

$$H = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\overline{n}} \end{pmatrix}$$

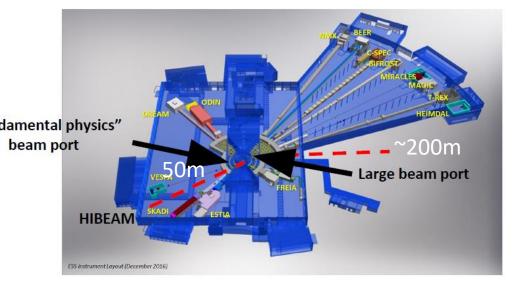
 $H = \begin{pmatrix} E_n & \varepsilon \\ \varepsilon & E_{\overline{n}} \end{pmatrix} \qquad \varepsilon = \text{mixing mass term}$

Probability to find an antineutron at time t is given by

$$P_{n\bar{n}}(t) = \frac{\varepsilon_{n\bar{n}}^2}{(\Delta E/2)^2 + \varepsilon_{n\bar{n}}^2} \sin^2\left[t\sqrt{(\Delta E/2)^2 + \varepsilon_{n\bar{n}}^2}\right] e^{-t/\tau_n},$$


 $\Delta E = E_n - E_{\overline{n}}$ Require degeneracy between n, \overline{n}

 \Rightarrow Zero magnetic field (<10⁻⁵ G)


Similarly for $n \to n'$

Magnetic field in dark sector

⇒ Scan for -1G <B<+1G in ~mG steps

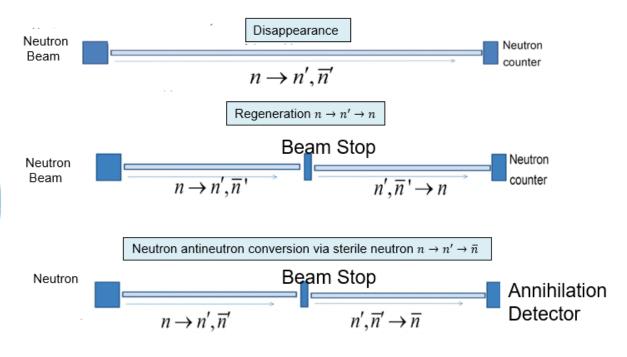
Beamlines and program

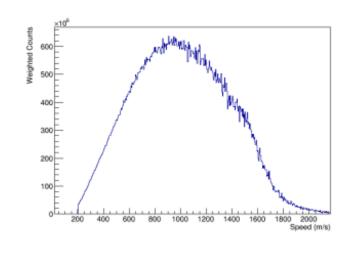
R&D
Annihilation detector prototype
Conceptual design reports for HIBEAM/NNBAR

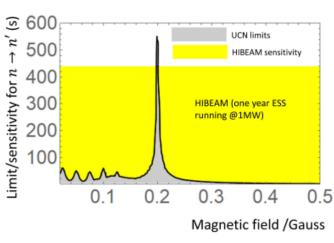
TDR Small scale experiments at ESS test beamline

2024 2028

HIBEAM High precision $n \to n'$ (x10 improvement) Low sensitivity free $n \to \bar{n}$


NNBAR High sensitivity free $n \to \overline{n}$ (x1000 improvement)

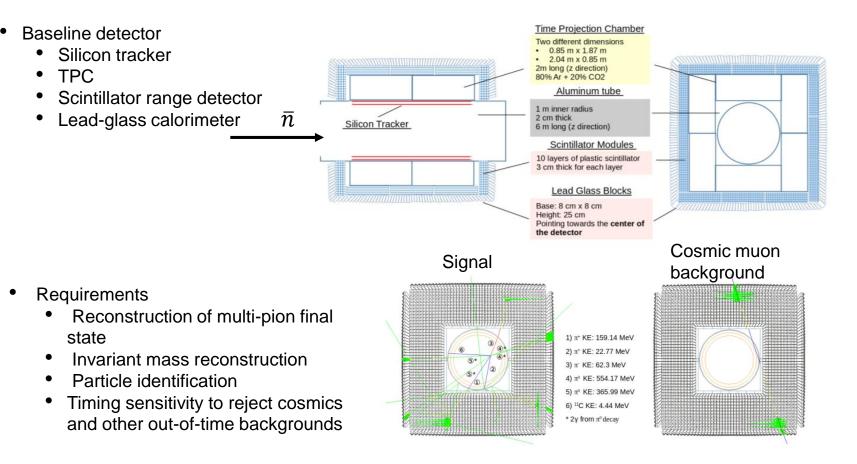

>2028 >2030


Search for sterile neutron oscillations at HIBEAM

Complementary suite of searches to constrain mixing Hamiltonian

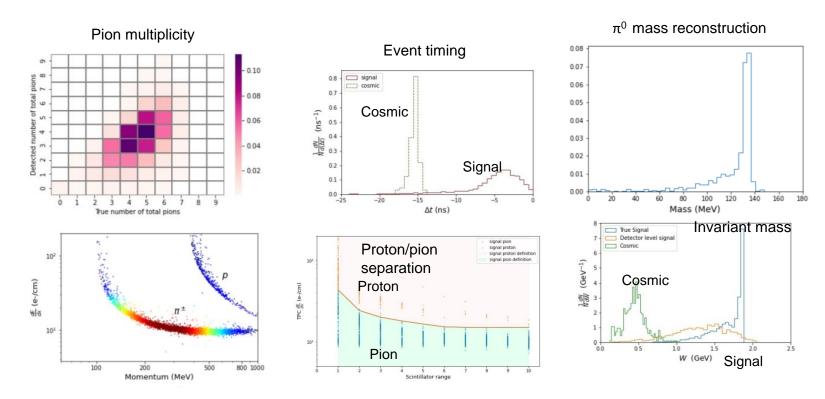
$$\hat{\mathscr{H}} = \left(egin{array}{cccc} m_n + ec{\mu}_n ec{B} & arepsilon_{nar{n}} & lpha_{nn'} & lpha_{nar{n}'} \ arepsilon_{nar{n}} & m_n - ec{\mu}_n ec{B} & lpha_{nar{n}'} & lpha_{nn'} \ lpha_{nn'} & lpha_{nar{n}'} & m_{n'} + ec{\mu}_{n'} ec{B}' & arepsilon_{nar{n}} \ lpha_{nar{n}'} & lpha_{nn'} & arepsilon_{nar{n}} & m_{n'} - ec{\mu}_{n'} ec{B}' \end{array}
ight)$$

design Investigations of different designs ongoing


Beamline of ANNI

Neutron speed

Sensitivity

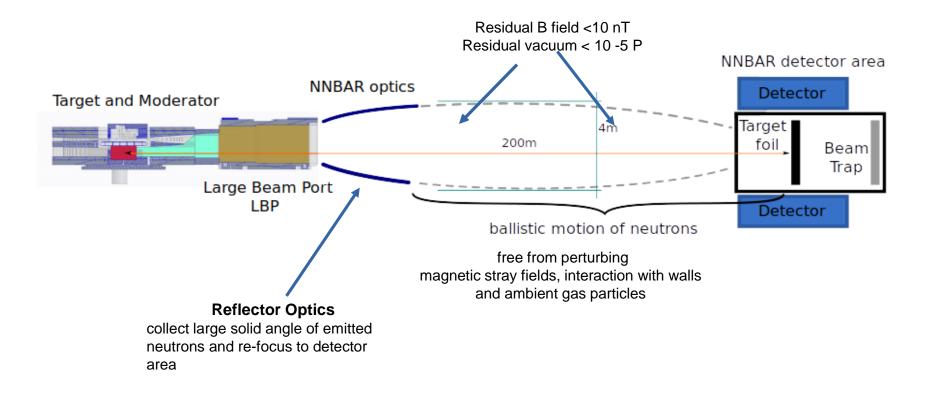

Annihilation detector

Signal: 1-2 GeV c.o.m. energy , 4-7 pions

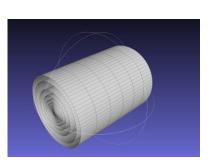
Prototype under construction: arXiv:2107.02147 [physics.ins-det]. For HIBEAM stage can also borrow existing detector, eg WASA detector

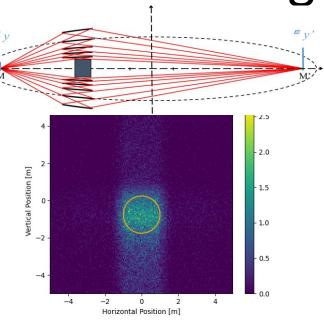
Geant-4 detector simulation

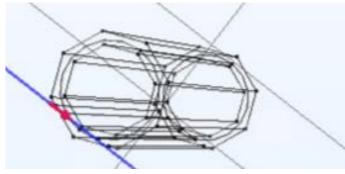
Geant 4 model designed and reproducing well expected distributions

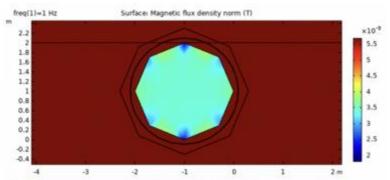

A Computing and Detector Simulation Framework for the HIBEAM/NNBAR Experimental Program at the ESS

Joshua Barrow^{10,11}, Gustaaf Brooijmans², José Ignacio Marquez Damian³, Douglas DiJulio³, Katherine Dunne⁴, Elena Golubeva⁵, Yuri Kamyshkov¹, Thomas Kittelmann³, Esben Klinkby⁸, Zsófi Kókai³, Jan Makkinje², Bernhard Meirose^{4,6,*}, David Milstead⁴, André Nepomuceno⁷, Anders Oskarsson⁶, Kemal Ramic³, Nicola Rizzi⁸, Valentina Santoro³, Samuel Silverstein⁴, Alan Takibayev³, Richard Wagner⁹, Sze-Chun Yiu⁴, Luca Zanini³, and


Symmetry 14 (2022) 1, 76

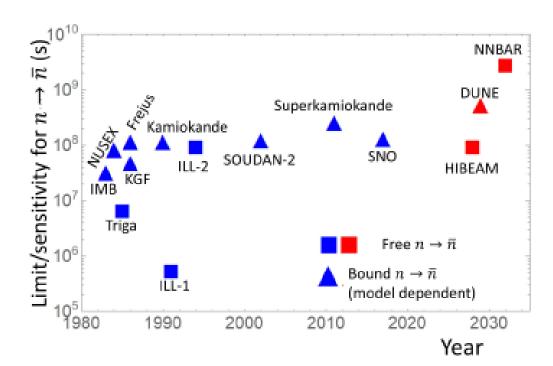

NNBAR Experiment




Optics and magnetic shielding

Nested Reflector
McStas simulation
Sensitivity per year
~"250 ILL units"

Outer + inner octagon shield from mu-metal


Round steel vacuum chamber: between shields

COMSOL simulations

<10 nT

Ongoing and planned activities

- Annihilation detector prototypes
- Further developments of optics, magnetics, and moderator designs
- Background campaign
 - Shielding designs using Comblayer
 - High energy spallation backgrounds, Cosmics, Gamma bg from activation, delayed beta decays, skyshine
 - Zero bg experiment at the ILL (1990's)
 - · Aim to reproduce this.

HIBEAM/NNBAR

- Developed from an Expression of Interest for a $n \to \bar{n}$ at the ESS (2015). Signatories from 26 institutes , 8 countries.
- Developed into multi-stage HIBEAM/NNBAR
 - Major effort SV,FR,DK,DE,US
 - Co-spokespersons G. Brooijmans (Columbia), D. Milstead (Stockholm)
 - Lead scientist (Y. Kamyshkov, Tennessee)
 - Technical Coordinator (V. Santoro, ESS)
- HIBEAM is supported by the Swedish Research Council (1.4MEuro) from the Swedish Research Council
- NNBAR is supported as part of a 3MEuro H2020 for an upgraded ESS with a new lower moderator

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the European Spallation Source

A. Addazi^{h,at}, K. Anderson^{aq}, S. Ansell^{bm}, K. S. Babu^{az}, J. Barrow^w D. V. Baxterde, P. M. Bentleyac, Z. Berezhianibl, R. Bevilacquac, R. Biondib, C. Bohm^{ba}, G. Brooijmans^{an}, L. J. Broussard^{aq}, B. Dev^{ay}, C. Crawford^z A. D. Dolgovai, A. Dunneba, P. Fierlingero, M. R. Fitzsimmonsw, A. Fomina, M. Frost^{aq}, S. Gardiner^c, S. Gardner^z, A. Galindo-Uribarri^{aq}, P. Geltenbort^p S. Girmohanta^{bb}, E. Golubeva^{ah}, G. L. Greene^w, T. Greenshaw^{aa}, V. Gudkov^k R. Hall-Wilton^{ac}, L. Heilbronn^x, J. Herrero-Garcia^{be}, G. Ichikawa^{bf}, T. M. Ito^{ab} E. Iverson^{aq}, T. Johansson^{bg}, L. Jönsson^{ad}, Y-J. Jwa^{an}, Y. Kamyshkov^w K. Kanaki^{ac}, E. Kearns^g, B. Kerbikov^{al,aj,ak}, M. Kitaguchi^{ap}, T. Kittelmann^{ac} E. Klinkby^{ae}, A. Kobakhidze^{bl}, L. W. Koerner^s, B. Kopeliovich^{bi}, A. Kozela^y V. Kudryavtsev^{ax}, A. Kupsc^{bg}, Y. Lee^{ac}, M. Lindroos^{ac}, J. Makkinje^{an} J. I. Marquezac, B. Meiroseba, T. M. Millerac, D. Milsteadba, R. N. Mohapatraj, T. Morishimaap, G. Muhrerac, H. P. Mumm, K. Nagamotoap, F. Nesti¹, V. V. Nesvizhevsky^p, T. Nilsson^r, A. Oskarsson^{ad}, E. Paryev^{ah} R. W. Pattie, Jr. Jr. S. Penttilä^{aq}, Y. N. Pokotilovski^{am}, I. Potashnikova^{bi} C. Redding^x, J-M. Richard^{bj}, D. Ries^{af}, E. Rinaldi^{au,bc}, N. Rossi^b, A. Ruggles^x B. Rybolt^u, V. Santoro^{ac}, U. Sarkar^v, A. Saunders^{ab}, G. Senjanovic^{bd,bn} A. P. Serebrovⁿ, H. M. Shimizu^{ap}, R. Shrock^{bb}, S. Silverstein^{ba}, D. Silvermyr^{ad} W. M. Snow^{d,e,f}, A. Takibayev^{ac}, I. Tkachev^{ah}, L. Townsend^x, A. Tureanu^q L. Varrianoi, A. Vainshteinag, J. de Vriesa, R. Woracekac, Y. Yamagatabk. A. R. Young^{as}, L. Zanini^{ac}, Z. Zhang^{ar}, O. Zimmer^p

^aAmherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA, USA
 ^bINFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi AQ, Italy
 ^cFermi National Accelerator Laboratory, Batavia, IL 60510-5011, USA
 ^dDepartment of Physics, Indiana University, 727 E. Third St., Bloomington, IN, USA, 47405
 ^eIndiana University Center for Exploration of Energy & Matter, Bloomington, IN 47408, USA
 ^fIndiana University Quantum Science and Engineering Center, Bloomington, IN 47408, USA
 ^gDepartment of Physics, Boston University, Boston, MA 02215, USA
 ^hCenter for Theoretical Physics, College of Physics Science and Technology, Sichuan University, 610065 Chengdu, China

- Pre-CDR white paper: *J. Phys. G* 48 (2021) 7, 070501 See also:
 - Proc AccApp 21 (arXiv: 2204.04051 [physics.ins-det))
- Symmetry 14 (2022) 1,76
- Proc vCHEP2021, *EPJ Web Conf.* 251 (2021) 02062, Arxiv: 2106.15898 [physics.ins-det])

Summary

- Baryon number violation not occurring in Nature would be the surprise
- Conversion of beam neutrons to sterile neutrons and/or antineutrons is a high sensitivity and clean means of searching for $\Delta B = 1,2$ with other hitherto conserved quantities unviolated.
- The ESS opens a new discovery window
- Sensitivity improvements of x10 $(n \to n')$ and x1000 $(n \to \overline{n})$ possible.
- Multistage program of HIBEAM/NNBAR planned
- Cross-disciplinary community neutronics, magnetics, detector specialists
- Support from Swedish and EU funding agencies
- Next step CDR's!
- Much to do and more collaborators are always welcome!!