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=5 @ Assumptions of Direct Dark Matter Detection
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=5’ @ Goals of Research

e Use hydrodynamic simulations of Milky Way analogues to inform
realistic velocity distributions of dark matter in the solar
neighborhood

* Generate bespoke predictions for dark matter direct detectors
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=5 @ Simulation Realization
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=5 @®Geocentric Velocit Dlstrlbutmns

® Realistic velocity distributions
show departures from MB

® Rate calculations have strong
dependence on geocentric
velocity distribution
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=5 @®Geocentric Velocit Dlstrlutmns

® Realistic velocity distributions
show departures from MB

® Rate calculations have strong
dependence on geocentric
velocity distribution
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=5 @ Annual Modulation
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=5’ @ Annual Modulation
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=@ Peak Day
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=5’ @ Model Comparison
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=5’@ Turn Over Energy - Q_
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Languages

Dark-MaRK is an open source Python 3 package designed to generate bespoke predictions for dark matter direct

detectors. Dark-MaRK allows users to vary three key aspects of dark matter direct detection - the detector model, ® Python 100.0%
the dark matter model, and the halo model of the galaxy.
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ABSTRACT

‘We use high-resolution, hydrodynamic, galaxy simulations from the Latte suite of FIRE-2 simulations to investigate the inherent

variation of dark matter in sub-sampled regions around the Solar Circle of a Milky Way-type analogue galaxy and its impact

on direct dark matter detection. These simulations show that the baryonic backreaction, as well as the assembly history of

substructures, has lasting impacts on the dark matter’s spatial and velocity distributions. These are experienced as ‘gusts’ of dark

matter wind around the Solar Circle, potentially complicating interpretations of direct detection experiments on Earth. We find

that the velocity distribution function in the galactocentric frame shows strong deviations from the Maxwell Boltzmann form . 1
typically assumed in the fiducial Standard Halo Model, indicating the presence of high-velocity substructures. By introducing htt pS / / arxiv.o rg / C bS/ 2 207 ’ 07644
a new numerical integration technique which removes any dependencies on the Standard Halo Model, we generate event-rate

predictions for both single-element Germanium and compound Sodium Iodide detectors, and explore how the variability of

dark matter around the Solar Circle influences annual modulation signal predictions. We find that these velocity substructures

contribute additional astrophysical uncertainty to the interpretation of event rates, although their impact on summary statistics

such as the peak day of annual modulation is generally low.

Key words: (cosmology:) dark matter — astroparticle physics — hydrodynamics — scattering — Galaxy:general — software:
simulations
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=@ Conclusions

* All VDFs demonstrate significant deviations from the
fiducial Maxwell Boltzmann fit, demonstrating the
inherent fluctuations in the dark matter field.

* Consequent annual modulation signals demonstrate that
high energy structure effects from VDFs do not persist.

* Model tests imply the Standard Halo Model is an
appropriate approximation.

* The critical turnover energy can be used by direct

detection experiments as a tool for constraining WIMP
mass

https://arxiv.org/abs/2207.07644



