Neutron Stars as Axion Laboratories

Based on: Foster, **SJW**, Lawson, Linden, Gajjar, Weniger, Safdi (2022) SJW, Noordhuis, Edwards, Weniger (2021) **SJW,** Salinas, Baum, Millar, Lawson, Marsh, Weniger (To appear soon) McDonald, **SJW** (To appear soon) Thjemsland, **SJW**, McDonald (To appear soon)

UNIVERSITY OF AMSTERDAM

Identification of Dark Matter

July 21, 2022

Neutron Stars as Axion Laboratories

Based on: Foster, **SJW**, Lawson, Linden, Gajjar, Weniger, Safdi (2022) SJW, Noordhuis, Edwards, Weniger (2021) **SJW,** Salinas, Baum, Millar, Lawson, Marsh, Weniger (To appear soon) McDonald, **SJW** (To appear soon) Thjemsland, **SJW**, McDonald (To appear soon)

UNIVERSITY OF AMSTERDAM

Identification of Dark Matter

July 21, 2022

 $\mathcal{L} \sim g_{a\gamma\gamma} \ a \ E \cdot B$ $p_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

B: Magnetic Field L: Length scale

 $\mathcal{L} \sim g_{a\gamma\gamma} \ a \ E \cdot B$ $p_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

B: Magnetic Field L: Length scale

Requirements for large conversion probability of axions into photons:

• *B* must be large

In vacuum, $k_a \ll k_{\gamma}$ • L must be large: for mildly-relativistic to non-relativistic axions, $L \sim (k_a - k_{\gamma})^{-1}$

 $\mathcal{L} \sim g_{a\gamma\gamma} \ a \ E \cdot B$ $p_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

B: Magnetic Field L: Length scale

Requirements for large conversion probability of axions into photons:

- *B* must be large
- L must be large: for mildly-relativistic to non-relativistic axions, $L \sim (k_a k_\gamma)^{-1}$

In vacuum, $k_a \ll k_{\gamma}$ **Modify photon dispersion relation** (E.g. in a cold plasma $k_{\gamma} = \sqrt{\omega^2 - \omega_p^2}$, and $k_a \sim k_{\gamma}$ possible)

 $\mathcal{L} \sim g_{a\gamma\gamma} \ a \ E \cdot B$ $p_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

B: Magnetic Field L: Length scale

Requirements for large conversion probability of axions into photons:

- *B* must be large
- L must be large: for mildly-relativistic to non-relativistic axions, $L \sim (k_a k_{\gamma})^{-1}$

In vacuum, $k_a \ll k_{\gamma}$ **Modify photon dispersion relation** (E.g. in a cold plasma $k_{\gamma} = \sqrt{\omega^2 - \omega_p^2}$, and $k_a \sim k_{\gamma}$ possible)

Ideal environments: Large coherent magnetic fields and dilute plasmas

Samuel J. Witte (GRAPPA / Amsterdam)

 $|\vec{B}| \lesssim 10^{15} \,\mathrm{G}$ $r_{NS} \sim 10 \,\mathrm{km}$

 $|\vec{B}| \lesssim 10^{15} \,\mathrm{G}$ $r_{NS} \sim 10 \,\mathrm{km}$

Samuel J. Witte (GRAPPA / Amsterdam)

Samuel J. Witte (GRAPPA / Amsterdam)

Samuel J. Witte (GRAPPA / Amsterdam)

Samuel J. Witte (GRAPPA / Amsterdam)

Observing the galactic center with the Green Bank Telescope

Survey Details:

- **Telescope:** Green Bank Telescope, 100m Single Dish
- **Observation Frequency:** 4–8 GHz [C band]
- **Observation Target:** Milky Way Galactic Center [inner ~ few pcs]
- **Observation Time:** ~4.6 hours
- **Observation Strategy:** On/off target

Data courtesy of the Breakthrough Listen Initiative

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Observing the galactic center with the Green Bank Telescope

Survey Details:

- **Telescope:** Green Bank Telescope, 100m Single Dish
- **Observation Frequency:** 4–8 GHz [C band]
- **Observation Target:** Milky Way Galactic Center [inner ~ few pcs]
- **Observation Time:** ~4.6 hours
- **Observation Strategy:** On/off target

Data courtesy of the Breakthrough Listen Initiative

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

GBT observations of galactic center

Population Synthesis

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

GBT observations of galactic center

Use star formation rates & stellar distributions to get

- 1.) Distributions of neutron star birth rate $p(t_{NS-birth})$
- 2.) Spatial distribution of young neutron stars $n_{NS}(\vec{r})$

Do et al (2013), Lu et al (2013), Yusef-Zadeh (2017)

Adopt initial distributions, simulate evolutionary tracks, and fit to the distributions we observe today

$$p(P, B_0, \theta_m | t_{age})$$

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

GBT observations of galactic center

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Step 1: Define plasma structure of magnetosphere

Resonant Conversion

Location: $m_a \sim \omega_p$ Efficiency: $\propto (\partial_x \omega_p)^{-1}$

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Step 1: Define plasma structure of magnetosphere

Resonant Conversion

Location: $m_a \sim \omega_p$ Efficiency: $\propto (\partial_x \omega_p)^{-1}$

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

 $m_a = 10.0 \mu eV$

Smaller axion mass \rightarrow resonant surface is larger Larger axion mass \rightarrow resonant surface is smaller

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

 $m_a = 10.0 \mu eV$

Smaller axion mass \rightarrow resonant surface is larger Larger axion mass \rightarrow resonant surface is smaller

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Tracking axion-photon conversion

Step 2: Axion phase space to photon flux

Non-adiabatic: SJW, Noordhuis, Edwards, Weniger (2021) Adiabatic: Thjemsland, SJW, McDonald (To appear)

Inefficient conversion

Tracking axion-photon conversion

Step 2: Axion phase space to photon flux

Non-adiabatic: SJW, Noordhuis, Edwards, Weniger (2021) Adiabatic: Thjemsland, SJW, McDonald (To appear)

Efficient conversion

Tracking axion-photon conversion

Step 2: Axion phase space to photon flux

Non-adiabatic: SJW, Noordhuis, Edwards, Weniger (2021) Adiabatic: Thjemsland, **SJW**, McDonald (To appear)

Efficient conversion

Ray tracing

Step 2: Axion phase space to photon flux

SJW, Noordhuis, Edwards, Weniger (2021) Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Final Photon Position

Ray tracing allows for:

- Accurate mapping of radio flux
- Line broadening effects
- Path-dependent absorption

Ray tracing

Step 2: Axion phase space to photon flux

SJW, Noordhuis, Edwards, Weniger (2021) Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Final Photon Position

Ray tracing allows for:

- Accurate mapping of radio flux
- Line broadening effects
- Path-dependent absorption

Ray tracing

Step 2: Axion phase space to photon flux

SJW, Noordhuis, Edwards, Weniger (2021) Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Final Photon Position

Ray tracing allows for:

- Accurate mapping of radio flux
- Line broadening effects
- Path-dependent absorption

~ 500 meters

Radio signal from isolated neutron star

Projected sky flux as viewed from neutron star

Radio signal from isolated neutron star

Radio signal from isolated neutron star

Step 3: Generating the axion 'forest'

Step 3: Generating the axion 'forest'

Step 3: Generating the axion 'forest'

Step 3: Generating the axion 'forest'

GBT axion search

Fiducial Model (Maximally Conservative)

Future prospects

Improvements:

- Better understanding of axion-photon mixing
- Exploit time / frequency domain information
- Better telescopes

. . . .

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Transient radio lines from axion miniclusters

Rare encounters of miniclusters (& axion stars) with neutron stars generate transient radio lines

Density field at matter-radiation equality

Ellis et al (2022)

SJW, Salinas, Baum, Lawson, Millar, Marsh, Weniger (To appear) Agrawal, Johsnon, Edwards, Kavanaguh, Marsh, Ransom, Shroyer, Visinelli, SJW, Weniger (Data analysis ongoing)

Samuel J. Witte (GRAPPA / Amsterdam)

Shown: 25% of Encounters $t \in [0,2]$ hr. 10.05 10.04 10.06 Freq. [GHz] 20 40 80 10060 120 Time [hours]

The taxonomy of axion transients

Conclusions

Neutron stars offer powerful and rich laboratory in which to look for axion physics

Probes of axion dark matter:

- *Look for*: Radio lines from smooth dark matter distribution
- *Look for*: Transient lines from minicluster and axion star encounters (extragalactic / cosmological)

Currently developing novel ways to probe axions even if they aren't dark matter!

Stay tuned for talk by Dion Noordhuis (next!)

Conclusions

Neutron stars offer powerful and rich laboratory in which to look for axion physics

Probes of axion dark matter:

- *Look for*: Radio lines from smooth dark matter distribution
- *Look for*: Transient lines from minicluster and axion star encounters (extragalactic / cosmological)

Currently developing novel ways to probe axions even if they aren't dark matter!

Stay tuned for talk by Dion Noordhuis (next!)

