Dark Matter Bound

Research Fellow: Stockholm University

CERN BSM Forum Seminar Wien: 19/07/22

Many thanks to my collaborators: John Beacom (OSU), Tracy Slatyer, Pouya Asadi, Greg Ridgeway (MIT), Eric Kuflik, Eric D. Kramer (Hebrew U.), Rebecca Leane (SLAC)

States

Juri Smirnov

Dark Matter is a New Particle

Not ordinary Matter:

Not MOND:

Not light Neutrinos:

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

$\Omega_{\rm DM} >> \Omega_{\rm Baryons}$ (CMB) (BBN, CMB)

$\Omega_{\nu} \approx 0.02 \left(\frac{m_{\nu}}{\text{eV}}\right)$

Thermal Model Space

Freeze-out and Un-stable Bound States

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Dark Matter Mass

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

thermal relic

Dark Matter Mass

 $\sigma v_{
m rel}$

nnihilation

Matter

 \checkmark

 $\partial \Gamma$

 $\langle \sigma v_{
m rel}$ lation mnihil Matter $\partial \Gamma$

Cross-Section area

Effect on the Freezeout

B. v. Harling, K. Petraki, 1407.7874

P. Asadi et al. 1610.07617

Mitridate et al. 1702.01141

J. Hartz, K. Petraki 1805.01200

J. Smirnov, J. F. Beacom 1904.11503

S. Bottaro et al. 2107.09688

Electroweak Dark Matter

Smirnov, Beacom: 1904.11503

Example: DM Spectroscopy (SU(2) 5-plet)

Example: DM Spectroscopy (SU(2) 5-plet)

Example: Sensitivity to Heavy Dark Matter

Preliminary

Example: Sensitivity to Heavy Dark Matter

Preliminary

Example: Sensitivity to Heavy Dark Matter

Phase Transitions and Stable Bound States

Beyond QCD

Dark Matter stability

$SU(N)_{\rm DC} \times SU(3)_c \times SU(2)_L \times U(1)_Y$ $SU(N)_{\rm DC} \times SU(3)_c \times U(1)_{\rm em}$

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

1503.08749

Dark Matter stability

 $SU(N)_{\rm DC} \times SU(3)_c \times SU(2)_L \times U(1)_Y$ $SU(N)_{\rm DC} \times SU(3)_c \times U(1)_{\rm em}$

New Baryon Number -> DM candidate

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

1503.08749

Dark Matter stability

 $SU(N)_{\rm DC} \times SU(3)_c \times SU(2)_L \times U(1)_Y$ $SU(N)_{\rm DC} \times SU(3)_c \times U(1)_{\rm em}$

New Baryon Number DM candidate Thermal contact with the SM sector

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

1503.08749

The Relic Abundance

Freeze-out & Confinement

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Freeze-out & Confinement

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Freeze-out & Confinement

First Idea: Geometrical Confinement

(blue regions).

Figure 5: Examples of dark condensation for $N_{DC} = 3$ (left), 4 (middle) and 5 (right). Dark quarks Q (anti-quarks \overline{Q}) are denoted as red (blue) dots, placed at random positions. We assume that each DM particle combines with its dark nearest neighbour, forming either unstable $\mathcal{Q}\bar{\mathcal{Q}}$ dark mesons (gray lines) or stable $Q^{N_{\rm DC}}$ dark baryons (red regions) and $\bar{Q}^{N_{\rm DC}}$ dark anti-baryons

> Dark Matter as a weakly coupled Dark Baryon A. Mitridate et al. : 1707.05380

Second Thought: Details of 1. Oder PT

Compression by the Bubble Wall

Compression by the Bubble Wall

Dynamical Confinement

2103.09822: Pouya Asadi, Greg Ridgway (MIT), Eric D. Kraemer, Eric Kuflik (Hebrew University), Tracy Slatyer (MIT), **JS**

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Dynamics of the Phase Transition I

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2103.09822

Dynamics of the Phase Transition II

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2103.09822

Local Boltzmann Evolution

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Minimal Abundance and Asymmetry

Result for Relic Abundance

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Weakly or Rarely?

M. Digmann et al. 1907.10618

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Tuesday: 15:50 Carlos Blanco Mesoscale

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Coincidence Detection:

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2008.10646, 2203.02309

Coincidence Detection:

DM heating Signals:

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2008.10646, 2203.02309

2010.00015

Coincidence Detection:

DM heating Signals:

DM Long-Lived Mediators:

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2008.10646, 2203.02309

1808.05624

2010.00015

Coincidence Detection:

DM heating Signals:

DM Long-Lived Mediators:

White Dwarf Ignition:

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2008.10646, 2203.02309

1808.05624

2010.00015

1805.07381 + In preparation

Thanks!

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

QCD Example

 $(SU(3)_{c}, S)_{c}$ Q = (3, 1,Qqq eQ = (3, N,Q = (8, 1,

$$U(2)_L, U(1)_Y)$$

0)
= 4/3 or $e = -2/3$ or $e = -1/3$
, Y)
0) Qg

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Q = (3, 1, 0)Q = (3, N, Y)Q = (8, 1, 0)

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

 $(SU(3)_c, SU(2)_L, U(1)_Y)$ Qqq e = 4/3 or e = -2/3 or e = -1/3Q q

Q = (3, 1, 0)Q = (3, N, Y)Q = (8, 1, 0)

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

 $(SU(3)_c, SU(2)_L, U(1)_Y)$

Q q

Qqq e = 4/3 or e = -2/3 or e = -1/3

 $(SU(3)_c, SU(2)_L, U(1)_Y)$ Q = (3, 1, 0)Qqq e = 4/3 or e = -2/3 or e = -1/3Q = (3, N, Y)Q = (8, 1, 0)Q q

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Idea: Chromocatalysis

The Q^2

Hybrids Q g

 $\frac{1}{\Lambda_{QCD}}$ Binding Energy $\approx \Lambda_{QCD}$ Dangerous

Idea: Chromocatalysis

The Q^2

Hybrids Q g

 $\frac{1}{\Lambda_{QCD}}$ Energy $\approx \Lambda_{QCD}$ **Igerous**

Chromo-catalysis in Cosmology

1801.01135, 1811.08418

1801.01135, 1811.08418

Mo: 09:00 Maxim Pospelov

Poster: Paliodetectors Sebastian Baum

1801.01135, 1811.08418

Open Question: Nuclear Binding of Isospin = 0 ?

Mo: 09:00 Maxim Pospelov

Poster: Paliodetectors Sebastian Baum

1801.01135, 1811.08418

Direct Dectection & Chromopolarizability

Direct Dectection & Chromopolarizability

$$\mathcal{L}_{\text{eff}} = C_S^g \mathcal{O}_S^g + C_{T_2}^g \mathcal{O}_{T_2}^g = M_{\text{DM}} \bar{B} B [c_E \vec{E}^{a2} + c_B \vec{B}^{a2}]$$
$$C_{T_2}^g (M_Z) = -M_{\text{DM}} c_E, \qquad C_S^g (M_Z) = \frac{C_{T_2}^g (M_Z)}{4} \frac{\pi}{\alpha_3}$$

$$\frac{f_N}{m_N} = -12C_S^g(M_Z)f_g - \frac{3}{4}C_{T_2}^g(M_Z)g(2, M_Z)$$

$$\sigma_{\rm SI} = \frac{f_N^2}{4\pi} \frac{m_N^2}{M_{\rm DM}^2}$$

$$\approx 2.3 \ 10^{-45} \,\mathrm{cm}^2 \times \left(\frac{20TeV}{M_{\rm DM}}\right)^6 \left(\frac{0.1}{\alpha_3}\right)^8 \left(\frac{c_E}{1.5\pi a^3}\right)^2$$

$$c_E = \frac{8\pi\alpha_3}{3} \frac{C}{N_c^2 - 1} \langle B | \vec{r} \frac{1}{H_8 - E_{10}} \vec{r} | B \rangle$$
$$c_E |_{\text{DM}} = (0.36 + 1.17)\pi a^3$$
Direct Dectection & Chromopolarizability

$$\mathcal{L}_{\text{eff}} = C_S^g \mathcal{O}_S^g + C_{T_2}^g \mathcal{O}_{T_2}^g = M_{\text{DM}} \bar{B} B [c_E \vec{E}^{a2} + c_B \vec{B}^{a2}]$$
$$C_{T_2}^g (M_Z) = -M_{\text{DM}} c_E, \qquad C_S^g (M_Z) = \frac{C_{T_2}^g (M_Z)}{4} \frac{\pi}{\alpha_3}$$

$$\frac{f_N}{m_N} = -12C_S^g(M_Z)f_g - \frac{3}{4}C_{T_2}^g(M_Z)g(2, M_Z)$$

$$\sigma_{\rm SI} = \frac{f_N^2}{4\pi} \frac{m_N^2}{M_{\rm DM}^2}$$

$$\approx 2.3 \ 10^{-45} \,\mathrm{cm}^2 \times \left(\frac{20TeV}{M_{\rm DM}}\right)^6 \left(\frac{0.1}{\alpha_3}\right)^8 \left(\frac{c_E}{1.5\pi a^3}\right)^2$$

$$c_E = \frac{8\pi\alpha_3}{3} \frac{C}{N_c^2 - 1} \langle B | \vec{r} \frac{1}{H_8 - E_{10}} \vec{r} | B \rangle$$
$$c_E |_{\text{DM}} = (0.36 + 1.17)\pi a^3$$

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Large Scattering Cross Sections

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

2008.10646: C. Cappiello, J.I. Collar, J. F. Beacom

Large Scattering Cross Sections

2008.10646: C. Cappiello, J.I. Collar, J. F. Beacom

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Large Scattering Cross Sections

See also: A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics https://arxiv.org/pdf/2203.02309.pdf

2008.10646: C. Cappiello, J.I. Collar, J. F. Beacom

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Accumulation/Annihilation

The Earth Heat Flow

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

T_{GB} < 0. 01 s

J. Beacom et al. 2007

 $M > few M_{Sol}$

 $M = M_{Sol}$

Stuff in Space

 $M = 10^{-1} - 10^{-2} M_{Sol}$

 $M = 10^{-3} M_{Sol}$

 $M = 1.4 M_{Sol}$

 $M > few M_{Sol}$

 $M = M_{Sol}$

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Stuff in Space

 $M = 10^{-3} M_{Sol}$

 $M = 1.4 M_{Sol}$

Glueball Lifetimes

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

Temperature Evolution

Work in progress: M. Benito (NICPB), R. K. Leane (Stanford), **J. Smirnov**

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

What can we expect?

arXiv: 2010.00015; R. K. Leane (Stanford), J. Smirnov

Juri Smirnov, juri.smirnov@fysik.su.se; Wien, 19/07/22

