Dark Matter WIMP Searches IDM 2022, Vienna, Austria

Rick Gaitskell (<u>gaitskell@brown.edu</u>) Particle Astrophysics Group, Brown University, Department of Physics Co-Spokesperson, LUX Collaboration Ex-Spokesperson, LZ Collaboration Director of the Center for the Fundamental Physics of the Universe @ Brown LUX and LZ Experiments supported by US DOE HEP see information at <u>http://particleastro.brown.edu</u> <u>http://cfpu.brown.edu</u> <u>http://lz.lbl.gov</u>

- Thank you to those of you who very kindly provided me with advanced slides from the work your are going to present
- Since there is clearly potential overlap with a number of Plenary Talks I will only show a subset of that material
- Also apologies if I don't explicitly advertise your talk

Hunting for Dark Matter in Deadwood - Newsnight

BBC 2014 Gaitskell / Brown University

Exposure Time.... 33 years searching for dark matter

CDMS II: Winter @Soudan Minnesota

Sanford Lab LUX & LZ @Lead, South Dakota PHYSICS ITALIAN STYLE XENON10 @ Gran Sasso

Sanford Laboratory

Gaitskell / Brown University

Since IDM 2018 @ Brown (our last in person meeting)

- Since the last "in person" IDM at Brown university in 2018
- The Universe has Expanded
- Direct Search Experiments targets are getting substantially bigger
- And I have done both

Dark Matter Searches

Getting

- To be more quantitative since the last in person IDM at Brown in 2018
- The Universe has expanded by 0.298 ppb (and their is some controversy over H₀)
- The leading sensitivity for dark matter direct detections has improved by factor x7 at 30 GeV mass and x3 at 1 TeV
- My weight 1.2x = COVID spread

Acronyms

- (WIMP) Weakly Interacting Massive Particles
- (MACHO) Massive Compact Halo Object
- (pMSSM) Phenomenological MSSM
- (NMSSM) Next-to-Minimal Supersymmetric Standard Model
- (FIMP) Feebly interacting massive particles models, couplings so feeble that places them well into the fog
- (CEvNS) Coherent elastic neutrino-nucleus scattering
- •8B Solar Neutrinos <=15 MeV neutrinos
- (AtmNu) Atmospheric neutrinos MeV-GeV neutrinos, 25% u/c at low energy
- (DSNB) Diffuse supernova neutrino background (hides under AtmNu)

DM Particle Models

CF1 WP1 arXiv:2203.08084 Thanks to Ben Loer, PNNL and Graciela B. Gelmini, UCLA

WIMP Spin Independent Coupling

CF1 WP1 arXiv:2203.08084 Thanks to Ben Loer, PNNL + Graciela B. Gelmini, UCLA

WIMP Spin Dependent Coupling

WIMPS

- Multiple well-motivated dark matter candidates remaining in the "traditional" ~GeVscale mass range.
 - Current building/operational searches are testing new models but the majority require following generation(s)
- Next Gen = "US: Gen 3" x10 sensitivity beyond Current Experiments
 - Fully test some particle candidates
 - Field should be pushing on both on SI and SD (F-p, Xe-n, [Xe-p])
- SI WIMP mass >~30 GeV raw fiducial mass => sensitivity being covered by relatively mature Xe TPC (reported results from 10 detectors 1,5,10,50,100,400,1000,4000,7000 kg) and also Ar TPC (10, 50, 20000 kg) + Ar Scin. (3600)
 - Sensitivity in this mass range does not depend strongly on experiment threshold unless it gets very high
 - Improvements in sensitivity are driven primarily by increasing exposure (i.e., target mass) and/or reducing backgrounds
 - Discovery does also benefit from reduced bg event rates and lower thresholds (so signal is well resolved above threshold)

WIMPS - Lowering Mass Sensitivity

- Large scale Xe and Ar also provide techniques to push down into <10 GeV
 Very dependent on accidentals rate
 - S2-only
 - Migdal Coupling (Nuclear recoil deposits energy into atomic x-ray electron system)
- For lower mass WIMPs (and dark sector / light) lower energy threshold with low/zero background provides very significant gains in sensitivity
 - R&D on new techniques will improve established detector performance and provide new methods to mitigate backgrounds and probe complementary parameter space near the neutrino fog

- Substantial well-motivated parameter space will yet remain even post "Gen 3" campaigns.
 - Irreducible CEvNS neutrino backgrounds can cause substantially diminished returns on further increases in exposure.
 - Mitigation by reducing uncertainties in the neutrino fluxes, further increases may become feasible.
 - Light, spin-dependent targets such as fluorine have substantially lower neutrino backgrounds and can therefore scale to larger masses even with current neutrino flux uncertainties.
- Directional detectors are one possible way to reject neutrino backgrounds and thereby reach beyond the neutrino-limited point of current technology.
 - Substantial R&D investment to reach the size and level of background control required to explore this parameter space.
 - Gas TPCs with micro-pattern gaseous detector (MPGD) readout should be advanced to the 10 m³ scale (but this is still way below cathedral scale needed if we are to lead search with this tech.)

US "SNOWMASS" Process - Cosmic Frontier White Papers

- D. S. Akerib et al. "Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog". In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.08084 [hep-ex].
- Rouven Essig, Graham K. Giovanetti, Noah Kurinsky, Dan McKinsey, Karthik Ramanathan, Kelly Stifter, and Tien-Tien Yu. "Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade". In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.08297 [hep-ph].
- Daniel Baxter et al. "Snowmass2021 Cosmic Frontier White Paper: Calibrations and backgrounds for dark matter direct detection". In: (Mar. 2022). arXiv: 2203.07623 [hep-ex].
- Yonatan Kahn et al. "Snowmass2021 Cosmic Frontier: Modeling, statistics, simulations, and comput- ing needs for direct dark matter detection". In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.07700 [hep-ex].
- Tsuguo Aramaki et al. "Snowmass2021 Cosmic Frontier: The landscape of cosmic-ray and high-energy photon probes of particle dark matter". In: (Mar. 2022). arXiv: 2203.06894 [hep-ex].
- Rebecca K. Leane et al. "Snowmass2021 Cosmic Frontier White Paper: Puzzling Excesses in Dark Matter Searches and How to Resolve Them". In: (Mar. 2022). arXiv: 2203.06859 [hep-ph].
- Shin'ichiro Ando et al. "Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics". In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.06781 [hep-ph].
- Daniel Carney et al. "Snowmass2021 Cosmic Frontier White Paper: Ultraheavy particle dark matter". In: (Mar. 2022). arXiv: 2203.06508 [hep-ph].
- INPUT ==> Snowmass2022 CF1: Particle Dark Matter Convener Summary Jodi Cooley, Hugh Lippincott, Tracy R. Slatyer, and Tien-Tien Yu (which is being finalized right now)

Neutrino Fog

- WIMP is well-covered by predictive theories, down to and well into the neutrino fog.
- Some of these theories will be fully tested by the upcoming generation of funded experiments.
- Subsequent generation of current experiments ("generation 3") is expected to reach toward / into neutrino fog
- Once deep into the neutrino fog to incur significant diminishing returns on further growth - either extreme scaling of detector size or developing new technology less sensitive to neutrino backgrounds

Similarity of 6 GeV WIMP with 8B CEvNS Signal 100 GeV WIMP and WIMP AtmNu Signal

CF1 WP1 arXiv:2203.08084

See O'Hare

2. Effect of Flux uncertainties (for illustration only)

With smaller flux uncertainties the boundary of the neutrino fog is pushed to lower cross sections

(This could make all the difference!)

O'Hare [2109.03116]

The Practical Matter of a Rare Event Search

- •Improvements in Dark Matter Search Reach
 - •Progress is Incremental...but by orders of magnitude
 - •e.g. x10 increases in target mass

Innovation

- •e.g. Entirely new target materials C3F8
- •e.g. Higher Field Operation of Ge Bolometric Target
- •e.g. Skipper Amp CCD Readout
- •e.g. Light nuclei (He) for Low Mass WIMP searches

The Practical Matter of a Rare Event Search

 In ~35 th year of searching - now at a sensitivity that 10⁶ better than the first round - we need detectors with a

Low Sisyphean Index †

•They must want to work correctly / do so without misleading us / low complexity - mustn't roll back down the hill when we stop paying attention for a moment

 And we will need to push them (pun indented) by another 10² before we reach the irreducible coherent neutrino backgrounds

+ Experimentalist's Perspective of the Technology itself, not the definition that the task can never be completed

Rick Gaitskell, Brown University, LZ/DOE

Dark Matter Direct Detection MeV, GeV, TeV

- •I prepared a List of the Search Experiments that have been
 - Recently Completed (last 4 years), or
 - About to Start, or
 - Some of the Future (out 10 years)

(not exhaustive, doesn't include more speculative ideas still in R&D)

- •Dates indicate the Start of Detector Operation and Science
- •(Forgive me for an omissions or slight errors in dates)

D	а	r
	U	•

MASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke	
ENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS	
ENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS	
ENON1T (Ionization)	TPC lonizonly	LXe	1,995 kg		Ended	2017	2019	LNGS	
ENONnT	TPC	LXe	7,000 kg	20 t yr	Construction/Run	2021	2025	LNGS	- 1ev
UX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF	
UX (Ionization)	TPC lonizonly	LXe	250 kg		Ended	2017	2019	SURF	
Z	TPC	LXe	8,000 kg	20 t yr	Construction/Run	2021	2025	SURF	
andaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL	
andaX-4T	TPC	LXe	4,000 kg	20 t yr	Running	2021	2025	CJPL	
Z HydroX	TPC	LXe+H2	8,000 kg		R&D	2026		SURF	
Darwin / US G3	TPC	LXe	50,000 kg	200 t yr	Planning	2028	2033	LNGS/SURF/Boulby	
EAP-3600	Scintillator	l Ar	3 300 kg		Running	2016	202X	SNOLAB	
	TDC		40 kg	AC key year	Fadad	2010	202/0	LNCC	
DarkSide-50	TPC logic only	LAr	46 Kg	46 kg year	Ended	2013	2019	LNGS	
Darkside-Livi (Ionization)	TPC Ionizonly	LAr	46 Kg	000 4	Ended	2018	2019	LINGS	
Darkside-20k	TPC	LAr	30 t	200 t yr	lanning/Construct	2025	2030	LNGS	
RGO	IPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB	
	Cointillator	Mal	0501		Densis	0000		INCS	
JAMA/LIBRA	Scintillator	Nai	250 kg		Running	2003		LINGS	
NAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Running	2017	2022	Canfranc	
COSINE-100	Scintillator	Nal	106 kg		Running	2016	2021	YangYang	
OSINE-200	Scintillator	Nal	200 kg		Construction	2022	2025	YangYang	
OSINE-200 South Pole	Scintillator	Nal	200 kg		Planning	2023	?	South Pole	
OSINUS	Bolometer Scintillator	Nal	?		Planning	2023	?	LNGS	
ABRE PoP	Scintillator	Nal	5 kg		Construction	2021	2022	LNGS	
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	LNGS	
SABRE (South)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL	
DEX-10	Ionization (77K)	Ge	10 kg	103 kg d	Running	2016	?	CJPL	
DEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg		Planning	202X		CJPL	
SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan	
DMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan	
DMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	Surface Lab	
SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Running	2020	2022	SNOLAB	
SuperCDMS SNOLAB	Cryo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB	
DELWEISS III	Crvo Ionization	Ge	20 ka		Ended	2015	2018	LSM	
DELWEISS III (High									
field)	Cryo Ionization HV	Ge	33 g	80 g d	Running	2019		LSM	
RESST-II	Bolometer Scintillatio	rCaWO4	5 kg		Ended	2012	2015	LNGS	
RESST-III	Bolometer Scintillatio	r CaWO4	240 a		Ended	2016	2018	LNGS	
RESST-III (HW Tests)	Bolometer Scintillatio	CaWO4			Running	2020		LNGS	
	Bubble Chamber	C3E8	2 kg		Ended	2013	2015		
200-40	Bubble Chamber	C3E8	2 kg 35 kg		Running	2013	2013	SNOLAB	
100-40		0010	50 Kg		- · ·	2020		ONOLAD	
PICO-60	Bubble Chamber	CF3I,C3F8	52 kg		Ended	2013	2017	SNOLAB	
PICO-500	Bubble Chamber	C3F8	430 kg		Construction/Run	2021		SNOLAB	
		054						D	
DRIFT-II	Gas Directional	CF4	0.14 kg		Ended			Boulby	
EWAGE-03b	Gas Directional	CF4	14 g	4.5 kg d	Ended	2013	2017		
YGNUS???	0.01								
IEWS-G	Gas Drift	CH4			Ended	2017	2019	LSM	
EWS-G	Gas Drift	CH4			Construction/Run	2020	2025	SNOLAB	
	0.00	0				0015	00.15		
DAMIC	CCD	Si	2.9 g	0.6 kg d	Ended	2015	2015	SNOLAB	
DAMIC	CCD	Si	40 g Si		Ended	2017	2019	SNOLAB	
DAMIC100	CCD	Si	100 g Si		Not Built			SNOLAB	
DAMIC-M	CCD Skipper	Si	1 kg Si		Construction/Run	2021	2024	LSM	
ENSEI	CCD Skipper	Si	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g	
ENSEI	CCD Skipper	Si	100 g Si		Construction/Run	2021	2023	SNOLAB	
LETHEIA	TPC	He			R&D			China Inst. At. Energy	Dick Caitaly

R&D

LBNL

Cryo TES

He

TESSERACT

R&D Planning Construction Running Ended

Dark Matter Searches

st. At. Energy Rick Gaitskell, Brown University, LZ/DOE

Dark Matter Direct Detection MeV - TeV

XMASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke
XENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS
XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS
XENON1T (Ionization)	TPC lonizonly	LXe	1,995 kg		Ended	2017	2019	LNGS
XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction/Run	2021	2025	LNGS
LUX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF
LUX (Ionization)	TPC lonizonly	LXe	250 kg		Ended	2017	2019	SURF
LZ	TPC	LXe	8,000 kg	20 t yr	Construction/Run	2021	2025	SURF
PandaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL
PandaX-4T	TPC	LXe	4,000 kg	20 t yr	Construction/Run	2021	2025	CJPL
LZ HydroX	TPC	LXe+H2	8,000 kg		R&D	2026		SURF
Darwin / US G3	TPC	LXe	50,000 kg	200 t yr	Planning	2028	2033	LNGS/SURF/Boulby
DEAP-3600	Scintillator	LAr	3,300 kg		Running	2016	202X	SNOLAB
DarkSide-50	TPC	LAr	46 kg	46 kg year	Ended	2013	2019	LNGS
Darkside-LM (Ionization)	TPC Ionizonly	LAr	46 kg		Ended	2018	2019	LNGS
Darkside-20k	TPC	LAr	30 t	200 t yr	lanning/Construct	2025	2030	LNGS
ARGO	TPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB
DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS
ANAIS-112	Scintillator	IaN	110 kg	Goal 5 vears	Running	2017	0000	Canfranc
COSINE-100	Scintillator	Nal	106 kg		Running	2016	2022	VandYand
COSINE-200	Scintillator	Nal	200 kg		Construction	2022	2025	YangYang
COSINE-200 South Pole	Scintillator	Nal	200 kg		Planning	2023	6	South Pole
COSINUS	Bolometer Scintillator	. Nal	2		Planning	2023	د.	LNGS
SABRE PoP	Scintillator	Nal	5 kg		Construction	2021	2022	LNGS
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	LNGS
SABRE (South)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL
CDFX-10	Ionization (77K)	Ge Ge	10 kg	103 ka d	Runing	2016	~	
CDEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg	5 5 5 5 5 5	Planning	202X	•	CJPL
OMO.	Carl and and and	č	0.10		Terre L	100	2046	and the second
Supercurvis	Cryo Ionization	9 0	9 Kg	7E bo d	Ended	1102	2102	Soudan
CDMSLite (High Field)	Cryo Ionization	ë Ge	1.4 Kg	2 GX G/~	Ended	2012	G102	Soudan
	Cryo Ionization / HV	ol Ge/ci	0.9 G	n 6 c 0	Dunning	0102	2002	
SuperCDMS SNOLAB	Cryo Ionization / HV	Ge/Si	3 rg/ rg 11 kg/3 kg		Construction	2023	2028	SNOLAB
EDELWEISS III	Crvo Ionization	Ge	20 kg		Ended	2015	2018	ISM
EDELWEISS III (High	Contraction UN					0100		No
CRESST-II	Bolometer Scintillatio	Ge CaWO4	5 kg	n ñ no	Ended	2013	2015	L NGS
CRESST-III	Bolometer Scintillatio	CaWO4	0070		Ended	2016	2018	NGS
CRESST-III (HW Tests)	Bolometer Scintillatio	r CaWO4	5 5 1		Running	2020	201	LNGS
PICO-2 PICO-40	Bubble Chamber Bubble Chamber	C3F8 C3F8	2 kg 35 kg		Ended	2013	2015	SNOLAB SNOLAB
PICO-60	Bubble Chamber	CE3LC3E8	52 kg		Ended	2013	2017	SNOLAR
PICO-500	Bubble Chamber	C3F8	430 kg		Construction/Run	2021	ì	SNOLAB
DRIFT-II	Gas Directional	CF4	0.14 kg		Ended			Boulby
NEWAGE-03b'	Gas Directional	CF4	14 g	4.5 kg d	Ended	2013	2017	
CYGNUS???	a				Ľ	1700	0100	
NEWS-G	Gas Drift	CH4 CH4			Construction/Run	2020	2025	SNOLAB
	50	5						
DAMIC	CCD	Si	2.9 g	0.6 kg d	Ended	2015	2015	SNOLAB
DAMIC	CCD	i N	40 g Si		Ended	2017	2019	SNOLAB
DAMIC100	ccn	ō	100 g SI		Not Built			SNOLAB
DAMIC-M SENSEI	CCD Skipper	u Ni	1 kg Si	24 4 24 4	Construction/Run	2021	2024	LSM Formilah 11/a
SENSEI	CCD Skipper	N IN	100 g Si	n +2 X 62	Construction/Run	2021	2023	Fermilau u/g SNOLAB
		5	5				ł	
ALETHEIA	TPC	He			R&D			China Inst. At. Energy
TESSERACT	Cruo TES	Ч			L S L			I RNI

Dark Matter Searches

Dark Matter Searches: Past, Present & Future

Dark Matter Searches: Past, Present & Future

Moore: Factor 10 every 6.5 years

Dark Matter Searches: Past, Present & Future

Moore: Factor 10 every 6.5 years Dark Matter Searches: Past, Present & Future

D	a	r
	U	

TESSERACT

Cryo TES

He

XMASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke		
XENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS		
XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS		_
XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ended	2017	2019	LNGS		
XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction/Run	2021	2025	LNGS	- 10\	
LUX	TPC	LXe	250 kg	30.000 kg d	Ended	2013	2016	SURF		/
LUX (Ionization)	TPC lonizonly	LXe	250 kg		Ended	2017	2019	SURF		
17	TPC	L Xe	8 000 kg	20 t vr	Construction/Run	2021	2025	SURF		
PandaX-II	TPC		580 kg	2019	Ended	2021	2020	CIPI		
	TPC		4 000 kg	20 t vr	Ended	2010	2010			
	TPC		4,000 kg	20 t yr	Running	2021	2025	CJPL		
LZ HydroX	TPC	LXe+HZ	8,000 kg	000 (R&D	2026	0000	SURF		
Darwin / US G3	IPC	LXe	50,000 kg	200 t yr	Planning	2028	2033	LNGS/SURF/Bouldy		
DEAP-3600	Scintillator	LAr	3,300 kg		Running	2016	202X	SNOLAB		
DarkSida 50	TRC	I Ar	16 kg	46 kg voor	Ended	2012	2010	INCS		
Darkside LM (legization)	TPC loniz only		40 Kg	46 kg year	Ended	2013	2019	LINGS		
Darkside-Livi (Ionization)	TPC Ionizonly	LAr	40 Kg	200.4		2016	2019	LINGS		
Darkside-20k	TPC	LAr	30 t	200 t yr	rianning/Construct	2025	2030	LNGS		
ARGO	IPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB		
DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS		
ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Running	2017	2022	Canfranc		
COSINE-100	Scintillator	Nal	106 kg		Running	2016	2021	YangYang		
COSINE-200	Scintillator	Nal	200 kg		Construction	2022	2025	YangYang		
COSINE-200 South Pole	Scintillator	Nal	200 kg		Planning	2023	?	South Pole		
COSINUS	Bolometer Scintillator	Nal	200 Mg		Planning	2023	2	INGS		
SABRE PoP	Scintillator	Nal	5 kg		Construction	2020	2022	LNGS		
SABRE (North)	Scintillator	Nol	50 kg		Blooping	2021	2022	LNGS		
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	ENG5		
SABRE (South)	Scinulator	INdi	50 Kg		Fianning	2022	2027	SUFL		
CDEX-10	Ionization (77K)	Ge	10 ka	103 ka d	Running	2016	?	CJPL		
CDEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg	roo ng u	Planning	2028	•	CIPI		
	ionization (PPR)	00	100-1000 kg		1 ianining	ZOZA				
SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan		
CDMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan		
CDMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	Surface Lab		
SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Running	2020	2022	SNOLAB		
SuperCDMS SNOLAB	Crvo Ionization / HV	Ge/Si	11 ka/3 ka		Construction	2023	2028	SNOLAB		
	Once legization	0.0	20.4~		Ended	2015	2019	LOM		
	Cryo Ionization	Ge	20 Kg		Ended	2015	2010	LSIVI		
Field)	Cryo Ionization HV	Ge	33 g	80 g d	Running	2019		LSM		
CRESST-II	Bolometer Scintillation	CaWO4	5 kg		Ended	2012	2015	LNGS		
CRESST-III	Bolometer Scintillation	CaWO4	240 a		Ended	2016	2018	INGS		
CRESST-III (HW Tests)	Bolometer Scintillation	CaWO4	210 9		Running	2020	2010	LNGS		
	Bolomotor Comunation	ourroy			rannig	LOLO		LINGO		
		0050						01101.15		
PICO-2	Bubble Chamber	C3F8	2 kg		Ended	2013	2015	SNOLAB		
PICO-40	Bubble Chamber	C3F8	35 kg		Running	2020		SNOLAB		
PICO-60	Bubble Chamber	CF3I,C3F8	52 kg		Ended	2013	2017	SNOLAB		
PICO-500	Bubble Chamber	C3F8	430 kg		Construction/Run	2021		SNOLAB		
DRIFT-II	Gas Directional	CF4	0.14 kg		Ended			Boulby		
NEWAGE-03b'	Gas Directional	CF4	14 g	4.5 kg d	Ended	2013	2017			
CYGNUS???										
NEWS-G	Gas Drift	CH4			Ended	2017	2019	LSM		
NEWS-G	Gas Drift	CH4			Construction/Run	2020	2025	SNOLAB		
DAMIC	CCD	Si	2.9 a	0.6 kg d	Ended	2015	2015	SNOLAB		
DAMIC	CCD	Si	40 a Si		Ended	2017	2019	SNOLAB		
DAMIC100	CCD	Si	100 a Si		Not Built			SNOLAB		
DAMIC M		0:	100 g 01		Construction /D	0004	0004			
DAMIC-M	CCD Skipper	51	1 kg Si	004	Construction/Run	2021	2024	LSM		
SENSEI	CCD Skipper	SI	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g		
SENSEI	CCD Skipper	Si	100 g Si		Construction/Run	2021	2023	SNOLAB		
	TPC	На						China last At Esse		
ALETHEIA	IPC	He			R&D			Unina Inst. At. Energy	Rick (faits)	<e< td=""></e<>

R&D

LBNL

R&D Planning Construction Running Ended

China Inst. At. Energy Rick Gaitskell, Brown University, LZ/DOE

Dark Matter Direct Detection MeV - TeV

Name	Detector	Target	Active Mass	Fiducial Live Exposure	Status	Start Ops (after construction)	End Ops	Location of Experiment
XMASS	Scintillator	LXe	832 kg		Ende	d 201	0 201	9 Kamioke
XENON100	TPC	LXe	62 kg		Ende	d 201	2 201	6 LNGS
XENON1T	TPC	LXe	1,995 kg		Ende	d 201	7 201	9 LNGS
XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ende	d 201	7 201	9 LNGS
XENONnT	TPC	LXe	7,000 kg	20 t yr	Running	202	1 202	5 LNGS
LUX	TPC	LXe	250 kg	30,000 kg d	Ende	d 201	3 201	6 SURF
LUX (Ionization)	TPC Ionizonly	LXe	250 kg		Ende	d 201	7 201	9 SURF
LZ	TPC	LXe	8,000 kg	20 t yr	Runnin	g 202	1 202	5 SURF
PandaX-II	TPC	LXe	580 kg		Ende	d 201	6 201	8 CJPL
PandaX-4T	TPC	LXe	4,000 kg	20 t yr	Running	202	1 202	5 CJPL
LZ HydroX	TPC	LXe+H2	8,000 kg		R&	D 202	6	SURF
Darwin / US G3	TPC	LXe	50,000 kg	200 t yr	Plannin	g 202	8 203	3 LNGS/SURF/E
DEAP-3600	Scintillator	LAr	3,300 kg		Runnin	g 201	6 202	X SNOLAB
DarkSide-50	TPC	LAr	46 kg	46 kg year	Ende	d 201	3 201	9 LNGS
Darkside-LM (Ionization)	TPC Ionizonly	LAr	46 kg		Ende	d 201	8 201	9 LNGS
Darkside-20k	TPC	LAr	30 t	200 t yr	lanning/Constru	ct 202	5 203	0 LNGS
ARGO	TPC	LAr	300 t	3000 t yr	Plannin	ig 203	203	5 SNOLAB
DAMA/LIBRA	Scintillator	Nal	250 kg		Runnin	g 200	3	LNGS
ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Runnin	g 201	7 202	2 Canfranc

How have we spent the last few years at Brown?

Construction of the Central PMT Arrays for LZ at Brown University Cleanrooms --> Installation at Sanford Lab, SD

0

3

Shipping LZ PMT Arrays from Brown University to Sanford L

BROM

1

20

DM Progress - Gaitskell

LZ Results from SR1 - Preprint + Talk (July 7, 2022)

- Science Run 1 ~3.5 month run, exposure is 60 live days x 5.5 tonnes fiducial
- (7t active in TPC+2t Xe skin+17t Gd-loaded LS)

See IDM Talks by Alden Fan, Ibles Olcina, Alissa Monte

- Curves:
 - Solid black: observed limit
 - Dashed-black: median expected sensitivity
 - Dot-dashed black: median
 3-sigma evidence
- No evidence of WIMPs at any mass
- Minimum exclusion on WIMP-nucleon cross section (SI) of 6x10⁻⁴⁸ cm² at 30 GeV
- Comparing to existing strongest upper limit:
 - x6.7 improvement at 30 GeV
- \circ x1.7 improvement above 1 TeV

arXiv:2207.03764

XLZD - XENON LUX ZEPLIN DARWIN

XLZD Consortium

- MOU between LZ, XENON, DARWIN
- Successful XLZD meeting 27-29 June 2022 at Karlsruhe Institute of Technology
- <u>https://xlzd.org/</u>
- White paper (2203.02309)

Leading Xenon Researchers unite to build next-generation Dark Matter Detector

SURF is distributing this press release on behalf of the DARWIN and LZ collaborations

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers,^{1,2} K. Abe,^{3,4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1,2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsum,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1,2} T.J. Anderson,^{1,2} B. Andrieu,⁷ N. Angelides,¹⁶ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰ B. Antunovic,^{21,22} E. Aprile,²³ H.M. Araújo,¹⁶ J.E. Armstrong,²⁴ F. Arneodo,²⁵ M. Arthurs,¹⁴ P. Asadi,²⁶ S. Baek,²⁷ X. Bai,²⁸ D. Bajpai,²⁹ A. Baker,¹⁶ J. Balajthy,³⁰ S. Balashov,³¹ M. Balzer,³² A. Bandyopadhyay,³³ J. Bang,³⁴ E. Barberio,³⁵ J.W. Bargemann,³⁶ L. Baudis,⁵ D. Bauer,¹⁶ D. Baur,³⁷ A. Baxter,³⁸ A.L. Baxter,⁹ M. Bazyk,³⁹ K. Beattie,⁴⁰ J. Behrens,⁴¹ N.F. Bell,³⁵ L. Bellagamba,⁶ P. Beltrame,⁴² M. Benabderrahmane,²⁵ E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2}

AC A. Fa

PandaX-4T

Collaboration: 18 institutions, 84 scientists / 3.7 tonne active, 2.7 tonne fiducial
New Search Results - July 2021/arXiv:2107.13438 Commissioning - 86 days of running

•General background similar to XE1T, however, tritium dominates at low energy. 3H was introduced during PandaX-II calibration with intrinsic 3H source. Working to remove.

XENONnT @ LNGS

- The XENONnT Experiment commissioned in 2020/21 and is currently taking science data
- Dual-phase Xe TPC
 - 5.9 t active target mass (fid mass ~4.5 t)
 - Achieving an e-lifetime >10 ms
 - Low Rn level (< 2 µBq/kg)
 - Reduced n-background thanks to the novel nVeto system
- First Science Run
 - Completed at the end of 2021.
 - After some maintenance and refurbishment we are again taking Science Data.
 - The analysis of the first months of data will be focused on the WIMP search and on the low-ER events, shedding light into the excess of event in the low ER region, seen by its predecessor, XENON1T

LXe TPC's Improving Sensitivity on Multiple Fronts

Dark matter nucleus scattering

crystaLiZe (Solid Xe Target ~140K)

• R&D on a crystalline/vapor Xe TPC

See Sorensen Talk

- Aim to establish if it is a cost-effective path to the neutrino floor
- Preliminarily, it can operate very much like a liquid xenon TPC, but can deliver O(x1000) or better radon exclusion.
- Several key steps remain to be demonstrated, including:
 - Further quantification of Rn exclusion (and diffusion)
 - Electron signal yield
 - Consistency/stability of the crystal surface
 - Purity (which depends somewhat on design)
 - Evidence that the crystallization can scale to 1.5 m size instruments

Future Noble Detectors

• Future Noble Detectors Summary, Michelle Galloway, Tuesday

Dark Matter Direct Detection MeV - TeV

	Name	Detector	Target	Active Mass	Fiducial Live Exposure	Status	Start Ops (after construction)	End Ops	Loc Exj	cation of periment	
	XMASS	Scintillator	LXe	832 kg		End	ed 20	010 2	019	Kamioke	
	XENON100	TPC	LXe	62 kg	J	End	ed 20	012 2	016	LNGS	
	XENON1T	TPC	LXe	1,995 kg		End	ed 20	017 2	019	LNGS	
	XENON1T (Ionization)	TPC Ionizonly	LXe	1.995 ko		End	ed 20)17 2	019	LNGS	
	XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction/R	un 20	021 2	025	LNGS	
	LUX	TPC	LXe	250 kg	30,000 kg d	End	ed 20	013 2	016	SURF	
e	LUX (Ionization)	TPC Ioniz -only	L Xe	250 kg		End	ed 20)17 2	019	SURF	
ł	LZ	TPC	LXe	8,000 kg	20 t yr	Construction/R	un 20	021 2	025	SURF	
	PandaX-II	TPC	LXe	580 ko		End	ed 20)16 2	018	CJPL	
ł	PandaX-4T	TPC	LXe	4,000 kg	20 t yr	Runnir	ng 20	021 2	025	CJPL	
	LZ HydroX	TPC	LXe+H2	8,000 kg		Ra	&D 20	026		SURF	
	Darwin / US G3	TPC	LXe	50,000 kg	200 t yr	Planni	ing 20	028 2	033	LNGS/SU	ł
	DEAP-3600	Scintillator	LAr	3,300 kg		Runni	ing 20	016 20	02X	SNOLAB	
	DarkSide-50	TPC	LAr	46 kg	46 kg year	End	ed 20	013 2	019	LNGS	
	Darkside-LM (Ionization)	TPC Ionizonly	LAr	46 kg		End	ed 20	018 2	019	LNGS	
	Darkside-20k	TPC	LAr	30 1	200 t yr	lanning/Constru	uct 20)25 2	030	LNGS	
	ARGO	TPC	LAr	300 1	3000 t yr	Planni	ing 20)30 2	035	SNOLAB	
	DAMA/LIBRA	Scintillator	Nal	250 kg	1	Runni	ing 20	003		LNGS	
Da	ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Runni	ing 20)17 2	022	Canfranc	
Ja		-									

Dark Matter Direct Detection MeV - TeV

										A
		D. I. I.	- .		Fiducial Live	01-1-1	Start	End	Location of	
	Name	Detector	larget	Active Mass	Exposure	Status	Ops (after	Ops	Experiment	
							construction)			
	XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS	
	XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ended	2017	2019	LNGS	
	XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction	2021	2025	LNGS	
	LUX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF	
	LUX (Ionization)	TPC Ionizonly	LXe	250 kg		Ended	2017	2019	SURF	
	LZ	TPC	LXe	8,000 kg	20 t yr	Construction	2021	2025	SURF	
	PandaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL	
	PandaX-4T	TPC	LXe	4,000 kg	20 t yr	Construction	2021	2025	CJPL	
	LZ HydroX	TPC	LXe+H2	8,000 kg		R&D	2026		SURF	
	Darwin / US G3	TPC	LXe	40,000 kg	200 t yr	Planning	2028	2033	LNGS / SUR	F
	Results	from >2.5 years of	of new expo	sure data						
	DEAP-3600	Scintillator	LAr	3,300 kg		Running	2016	202X	SNOLAB	
	DarkSide-50	TPC	LAr	46 kg	46 kg year	Ended	2013	2019	LNGS	
	Darkside-LM (Ionization)	TPC lonizonly	LAr	46 kg		Ended	2018	2019	LNGS	
	Darkside-20k	TPC	LAr	30 t	200 t yr	Construction	2025	2030	LNGS	
	ARGO	TPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB	
	DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS	
	ANAIS-112	Scintillator	Nal	112 ka	Goal 5 years	Running	2017	2022	Canfranc	
	COSINE-100	IIRA EVDA	rimen	to with	Noh	le liquid	2016	2021	YangYang	
	COSINE-200					C LIQUIO	2022	2025	YangYang	
Dar	COSINE-200 South Pole	Scintillator	Nal	200 ka		Planning	2023	?	South Pole	

DarkSide Evolution

•DarkSide-20k construction @LNGS Hall C from 2023+

See Talk by Masato Kimora

- Working with mockups fro HV validation
- Start filling the detector with UAr in 2026
- Direct WIMP dark matter search;
- Dual phase argon time projection chamber (TPC);
- Deep underground at LNGS, Italy.

DarkSide-10 @PU&LNGS 10 kg 2010~2012 DarkSide-50 @LNGS 46 kg 2013~2021

DarkSide-20k @LNGS 20 tonnes 2026~

Yi Wang, ICHEP, July 2022

DarkSide-50 (46 kg)

- •Data taken in 2018 350 live-days dataset (6.8 tonne-days)
- •Will be discussing a new analysis with extended exposure 1.8x and improved calibrations show projected sensitivity (results to follow soon)
- Dual phase argon TPC; Radon free 46.4 kg active mass; clean room Light yield (@null field) ~ 8 p.e./keVee. Water cherenkov fop PMT array detector (WCD) LAr feed PMT mount and reflector Diving bell Boiler for gas pocket Liquid scintillator ITO anode veto (LSV) Extraction grid Field cage rings PTFE reflector ITO cathode TPC Cathode window Bottom PMT array

DarkSide-50 New Analysis Projected Sensitivity

Masato Kimura | IDM22 - 19 July '22

Projected Sensitivity

3

DEAP 3600

Overview of DEAP-3600: **The Detector**

Dark Matt

Dark matter Experiment using Argon Pulse shape discrimination (PSD)

3.3 tonnes of Liquid Argon (LAr) as target

Dark matter elastically scatters off argon nucleus, recoiling argon excites/ionizes nearby argon atoms

Excited/ionized argon form excited dimer states, relax to ground state via scintillation of 128 nm photons

Scintillation photons pass through TPB wavelength shifter, become 420 nm photons

Photons collected by light guides, detected by array of 255 photomultiplier tubes (PMTs)

DEAP 3600

ROYAL HOLLOWAY

Precision Measurements: **PSD in 4.5 Tonne-Year Exposure**

- PSD model tested with both energy estimators: total integrated charge & with afterpulsing removal
- ³⁹Ar leakage is reduced by an order magnitude with afterpulsing removal compared to total charge integration

Result: world leading PSD!

10⁻¹⁰ leakage fraction of ³⁹Ar for 50% NR acceptance at 110 PE (117.5 keV_{ee})

The GADMC

DarkSide-50 @LNGS DEAP-3600 @SNOLAB >500 collaborators, >100 institutes, 14 countries. **Ultimate Goal: Intermediate Goal:** ARGO DarkSide-20k 3000 t yr exposure 200 t yr exposure **Neutrino floor** ASTROCENT BROOKHAVEN ArDM @LSC Fermilab G S miniCLEAN @SNOLAB ETH INFN SHERBROOKE araid 09/07/2022 ICHEP 2022, Bologr WARWICK

Global Argon Dark Matter Collaboration;

Established in 2017;

Dark Matter Direct Detection MeV - TeV

										100
	Name	Detector	Target	Active Mass	Fiducial Live Exposure	Status	Start Ops	End Ops	Location of Experiment	
							(after construction)			
	DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS	
	ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Running	2017	2022	Canfranc	
	COSINE-100	Scintillator	Nal	106 kg		Running	2016	2021	YangYang	
	COSINE-200	Scintillator	Nal	200 kg		Construction	2022	2025	YangYang	
	COSINE-200 South Pole	Scintillator	Nal	200 kg		Planning	2023	?	South Pole	
	COSINUS	Bolometer Scintillator	Nal	?		Planning	2023	?	LNGS	
	SABRE PoP	Scintillator	Nal	5 kg		Construction	2021	2022	LNGS	
	SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	LNGS	
	SABRE (South)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL	
	CDEX-10	Ionization (77K)	60	10 ka	103 ka d	Running	2016	?	CJPL	
	CDEX-100 / 1T	Ionizatio Modu	Ilatio	n of D	M Sigr	as Planning	202X		CJPL	
	SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan	
	CDMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan	
	CDMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	SNOLAB	
	SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Construction	2020	2022	SNOLAB	
	SuperCDMS SNOLAB	Cryo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB	
	EDELWEISS III	Cryo Ionization	Ge	20 kg		Ended	2015	2018	LSM	
	EDELWEISS III (High Field)	Cryo Ionization HV	Ge	33 g		Running	2019		LSM	
De	CRESST-II	Bolometer Scintillation	CaWO4	5 kg		Ended	2012	2015	LNGS	
Dal	ODEOOT III	Delementer Cointillation	CalMOA	240 ~		Ended	2016	2010	LNCC	

Sodium Iodide (Nal) experiments

- DAMA/LIBRA observed annual modulation with NaI(TI), now >9σ significance
 - DAMA Reported first observ
 - DAMA/LIBRA Operating 200
- •So far, no evidence for a
 - ANAIS-112 (100 kg, 3 y of d
 - PRD 103, 102005 (2021) incompatible with DAMA/LIBRA at 3.3σ [1-6 keV] Note: Same threshold but BG is 3x that of DAMA/LIBRA
 - COSINE-100 (106 kg Nal,
 - Nature 564, 83 (2018), PRL 123, 0
- •New experiments
 - COSINE-200 (200 kg, ultra
 - COSINUS: phonons+light in rejection; LNGS 2022/23

20	22/2	23	F	R A			
-	40K	contributio	on (600µBo	q) and flat	background	1c/(keV	kg d)
Yield	1.4						
ght	1.2					And a last of the second se	e /γ-band
	1.0						
	0.8						
	0.6	an dear te		CO	SINUS	5	
	0.4	· · · · ·					Na-recoils
	0.2						INA-TECOIIS
	0.0						I-recoils
	-0.2	×					11000110
	-0.4	WIMP e	vents fron	n simulatio	n		
		10	20	30	40	50	60 70 Eporgy (ko)()
Plot	from [6]						Ellergy (Kev)

[1-6] KEV [2-6] KEV

Energy (keV) 54

37 -

ve

ANAIS Preliminary for IDM2022 (Marisa Sarsa)

The data of DAMA/Nal + DAMA/LIBRA-phase1 +DAMA/LIBRAphase2 favour the presence of a modulated behaviour with proper features at 13.7 σ C.L.

Dark Matter Direct Detection MeV - TeV

Name		Detector	Target	Active Mass	Fiducial Live	Status	Start	End	Location of	
Indiffe		Delector	larget	Active mass	Exposure	Olalus	(after construction)	Ops	Experiment	
SuperCDMS		Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan	
CDMSLite (Hi	igh Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan	
CDMS-HVeV	Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	SNOLAB	
SuperCDMS (CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Construction	2020	2022	SNOLAB	
SuperCDMS S	SNOLAB	Cryo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB	
EDELWEISS	III	Cryo Ionization	Ge	20 kg		Ended	2015	2018	LSM	
EDELWEISS	III (High Field)	Cryo Ionization HV	Ge	33 g		Running	2019		LSM	
CRESST-II		Bolometer Scintillation	CaWO4	5 kg		Ended	2012	2015	LNGS	
CRESST-III		Bolometer Scintillation	CaWO4	240 g		Ended	2016	2018	LNGS	
CRESST-III (H	HW Tests)	Bolometer Scintillation	CaWO4			Running	2020		LNGS	
PICO-2		Bubb				Ended	2013	2015	SNOLAB	
PICO-40		Bubb Future	Crvc	genic	Detec	tors uction	2020		SNOLAB	
PICO-60		Bubble Chamber	CF3I,C3F8	52 kg		Ended	2013	2017	SNOLAB	
PICO-500		Bubble Chamber	C3F8	430 kg		Construction	2021		SNOLAB	
DRIFT-II		Gas Directional	CF4	0.14 kg		Ended			Boulby	
NEWAGE-03	b'	Gas Directional	CF4	14 g	4.5 kg d	Ended	2013	2017		
NEWS-G		Gas Drift	CH4			Ended	2017	2019	LSM	
NEWS-G		Gas Drift	CH4			Construction	2020	2025	SNOLAB	
Dai DAMIC		CCD	Si	2.9 a	0.6 ka d	Ended	2015	2015	SNOLAB	

SuperCDMS @ SNOLAB

SUPERCOMS RECENT ACTIVITIES

- Low-threshold WIMP searches with R&D detectors
 - CPD
 - ► HVeV operated at 0V
- Ongoing tower testing at SLAC:
 - First SuperCDMS detector tower (tower 1) tested a SLAC
 - Tower 1 testing at CUTE facility later this year
- 100 eV Ionization Yield Measurements in Si using an HVeV detector

SuperCDMS Tower CPD Detector and Energy Spectr

PRL **127**, 061801

Dark Matter Direct Detection MeV - TeV

Name	Detector	Target	Active Mass	Fiducial Live Exposure	e Status	Start Ops (after construction)	End Ops	Location of Experiment
PICO-2	Bubble Chamber	C3F8	2 kg		Ended	2013	2015	SNOLAB
PICO-40	Bubble Chamber	C3F8	35 kg		Running	2020		SNOLAB
PICO-60	Bubble Chamber	CF3I,C3F8	52 kg		Ended	2013	2017	SNOLAB
PICO-500	Bubble Chamber	C3F8	430 kg		Construction/Run	2021		SNOLAB
DDIET II	Cas Directional	054	0.14 km		Ended			Daulhu
	Gas Directional	CF4	0.14 Kg	1 E ka d	Ended	2012	2017	Boulby
NEVVAGE-03D	Gas Directional	GF4	14 g	4.5 Kg a	Ended	2013	2017	
NEWS C	Goo Drift	CHA			Ended	2017	2010	
NEWS-G	Gas Drift				Construction/Pup	2017	2019	
NEWS-G	Gas Dilit	0114			Construction/Run	2020	2025	SNOLAD
DAMIC	CCD	Si	2.9 g	0.6 kg d	Ended	2015	2015	SNOLAB
DAMIC	CCD	Si	40 g Si		Ended	2017	2019	SNOLAB
DAMIC100	CCD	Si	100 g Si		Not Built			SNOLAB
DAMIC-M	CCD Skipper	Si	1 kg Si		Construction/Run	2021	2024	LSM
SENSEI	CCD Skipper	Si	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g
SENSEI	CCD Skipper	Si	100 g Si		Construction/Run	2021	2023	SNOLAB
ALETHEIA	TPC	He			R&D			China Inst. At.
TESSERACT	Cryo TES	Не			R&D			LBNL

Bubble chambers - PICO & SBC

- •PICO: superheated liquid C3F8
 - Acoustic + Visual (Camera) readout : ER event rejection
 - PICO-60 C3F8 produced factor 17x in SDp sensitivity
 - PICO-40L RSU chamber coming online Fall 2022 commissioning is underway
 - PICO-500 at SNOLAB: under design+construction in 2022++
- •New detector: the Scintillating Bubble Chamber (SBC)
 - Superheated 10 kg Xe-doped LAr, cooled to 130 K, piezoelectric sensors + cameras readout + SiPMs for scintillation signal

Dark Matter Searches

Dark Matter Mass [GeV/c²] Thank you to Laura Baudis Rick Gaitskell, Brown University, / LZ / DOE

SBC

Dark

XMASS	Scintillator	LXe	832 kg		Ended	2010	2019	Kamioke
XENON100	TPC	LXe	62 kg		Ended	2012	2016	LNGS
XENON1T	TPC	LXe	1,995 kg		Ended	2017	2019	LNGS
XENON1T (Ionization)	TPC Ionizonly	LXe	1,995 kg		Ended	2017	2019	LNGS
XENONnT	TPC	LXe	7,000 kg	20 t yr	Construction/Run	2021	2025	LNGS
LUX	TPC	LXe	250 kg	30,000 kg d	Ended	2013	2016	SURF
LUX (Ionization)	TPC Ionizonly	LXe	250 kg		Ended	2017	2019	SURF
LZ	TPC	LXe	8.000 kg	20 t vr	Construction/Run	2021	2025	SURF
PandaX-II	TPC	LXe	580 kg		Ended	2016	2018	CJPL
PandaX-4T	TPC	LXe	4 000 kg	20 t vr	Construction/Run	2021	2025	CJPI
	TPC	LXe+H2	8,000 kg	2019	R&D	2026	2020	SURF
Danwin / US G3	TPC		50,000 kg	200 t vr	Planning	2020	2033	LNGS/SURE/Boulby
Darwin / 03 03	IFC	LAG	30,000 kg	200 t yi	Fianning	2020	2000	LINGS/SORF/Bouldy
DEAP-3600	Scintillator	LAr	3,300 kg		Running	2016	202X	SNOLAB
DarkSide-50	TPC	LAr	46 kg	46 kg year	Ended	2013	2019	LNGS
Darkside-LM (Ionization)	TPC Ionizonly	LAr	46 kg		Ended	2018	2019	LNGS
Darkside-20k	TPC	LAr	30 t	200 t yr	lanning/Construct	2025	2030	LNGS
ARGO	TPC	LAr	300 t	3000 t yr	Planning	2030	2035	SNOLAB
DAMA/LIBRA	Scintillator	Nal	250 kg		Running	2003		LNGS
ANAIS-112	Scintillator	Nal	112 kg	Goal 5 years	Running	2017	2022	Canfranc
COSINE-100	Scintillator	Nal	106 kg	cour o youro	Running	2016	2021	VanaVana
	Scintillator	Nal	200 kg		Construction	2010	2021	Yang Yang
COSINE 200 South Bolo	Scintillator	Nal	200 kg		Blooping	2022	2023	Fariy fariy
COSINE-200 South Pole	Scintiliator	Nai	200 kg		Planning	2023	?	South Pole
COSINUS	Bolometer Scintillator	Nal	?		Planning	2023	?	LNGS
SABRE PoP	Scintillator	Nal	5 kg		Construction	2021	2022	LNGS
SABRE (North)	Scintillator	Nal	50 kg		Planning	2022	2027	LNGS
SABRE (South)	Scintillator	Nal	50 kg		Planning	2022	2027	SUPL
CDEX-10	Ionization (77K)	Ge	10 kg	103 kg d	Running	2016	?	CJPL
CDEX-100 / 1T	Ionization (77K)	Ge	100-1000 kg		Planning	202X		CJPL
SuperCDMS	Cryo Ionization	Ge	9 kg		Ended	2011	2015	Soudan
CDMSLite (High Field)	Cryo Ionization	Ge	1.4 kg	~75 kg d	Ended	2012	2015	Soudan
CDMS-HVeV Si	Cryo Ionization HV	Si	0.9 g	0.5 g d	Ended	2018	2018	Surface Lab
SuperCDMS CUTE	Cryo Ionization / HV	Ge/Si	5 kg/1 kg		Running	2020	2022	SNOLAB
SuperCDMS SNOLAB	Crvo Ionization / HV	Ge/Si	11 kg/3 kg		Construction	2023	2028	SNOLAB
	Cruc Ionization	Go	20 kg		Ended	2015	2019	ISM
	Cryo Ionization	Ge	20 Kg		Ended	2015	2010	LOW
Field)	Crvo Ionization HV	Ge	33 a	80 a d	Running	2019		LSM
CRESST-II	Bolometer Scintillation	CaWO4	5 kg	0090	Ended	2012	2015	LNGS
	Delemeter Ceintillation		240 -		Ended	2016	2010	
	Bolometer Scintillation	CaWO4	240 g		Ended	2016	2018	LNGS
CRESST-III (HVV Tests)	Bolometer Scintillation	Cavv04			Running	2020		LNGS
PICO-2	Bubble Chamber	C3F8	2 kg		Ended	2013	2015	SNOLAB
PICO-40	Bubble Chamber	C3F8	35 kg		Running	2020		SNOLAB
PICO-60	Bubble Chamber	CF3I,C3F8	52 kg		Ended	2013	2017	SNOLAB
PICO-500	Bubble Chamber	C3F8	430 kg		Construction/Run	2021		SNOLAB
DRIFT-II	Gas Directional	CF4	0.14 kg		Ended			Boulby
NEWAGE-03b'	Gas Directional	CF4	14 a	4.5 kg d	Ended	2013	2017	
CYGNUS???								
NEWS-G	Gas Drift	CH4			Ended	2017	2019	LSM
NEWS C	Gas Drift				Construction/Bun	2017	2013	
NEWS-G	Gas Dilit	004			Construction/Run	2020	2025	SNULAD
DAMIC	CCD	Ci	20-	06 44 4	Ended	2015	2015	
DAMIC	000	0	2.9 g	0.6 Kg d	Ended	2015	2015	
DAMIC	CCD	51	40 g Si		Ended	2017	2019	SNULAB
DAMIC100	CCD	Si	100 g Si		Not Built			SNOLAB
DAMIC-M	CCD Skipper	Si	1 kg Si		Construction/Run	2021	2024	LSM
SENSEI	CCD Skipper	Si	2 g Si	2g x 24 d	Running	2019	2020	Fermilab u/g
SENSEI	CCD Skipper	Si	100 g Si		Construction/Run	2021	2023	SNOLAB
			_					
ALETHEIA	TPC	He			R&D			China Inst. At. Energy
TESSERACT	Cryo TES	He			R&D			LBNL

/ - TeV

R&D Planning Construction Running Ended

Dark Matter Searches

Rick Gaitskell, Brown University, LZ/DOE

Directional Detectors

• Moving Through the Neutrino Fog...

MIMAC - Directionality is demonstrated in the keV-range for the first time Cyprien Beaufort

- MIMAC is a directional detector based on a low-pressure gaseous TPC with a Micromegas.
- Properties:
 - Gas mixture i-C4H10 + 50% CHF3 at 30 mbar or 70% CF4 + 28% CHF3 + 2% i-C4H10 at 50 mbar
 - Directional detection threshold : 1 keVee
 - Measured angular resolution in the keV-range : 15°
- Status:
 - A 6L prototype has operated for 6 years in the Modane Underground Laboratory (LSM)

- Currently testing a 60L prototype having a 35x35 cm^2 resistive anode with 1792 strips
- Summary:
 - To detect nuclear recoils in the keV-range, it is required to operate the detector at high gain => some track distortions appear due to the influence of the numerous ions produced in the avalanche. At the same time, it improves the detector sensitivity.
 - Developed a procedure to control the track distortion while taking benefit from the improved sensitivity.
 - This procedure gives access to head-tail recognition <=> determination of the sense of the nuclear recoil
 - Evaluate the MIMAC directional performance by means of neutron signals 8 keV and 27 keV
 - Obtain 15° angular resolution down to 1 keVee
 - Demonstrate that directionality is accessible in the keV-range => for probing WIMPs down to GeV

Directional Detectors

CYGNO/INITIUM, G. Dho TPC - GEM amplification optically readout

ADAMO, Vincenzo Caracciolo - DM directionality approach using ZnWO4 crystal scintillators

Rick Gaitskell, Brown University, LZ/DOE

Directional Detectors

- Cygnus Collaboration High Gain Negative Ion TPCs with Continuous Radon Reduction -Alasdair McLean
 - Successful operation of the MMThGEM in low pressure (30 torr) SF6
- Directional Detectors Summary Elisabetta Baracchini, Tuesday

QUIETEST KNOWN PLACES IN THE UNIVERSE

BUT LET'S HOPE NOT TOO QUIET WE REALLY ARE LOOKING FOR A SIGNAL

We have been beating Moore's Law in terms of progress in the search-space (cross-section) for some specific DM particle types. (It's a big space so we need to make rapid progress :-)

However, new models/experiments are also spreading "laterally" in the search-space in terms of candidate particle mass. A challenge will be to ensure that we have multiple experiments able to test possible signals that occur.

New technologies can often introduce new pathologies for backgrounds and we will need a way to differentiate between real DM-related signals and unwanted background pathologies.

Conclusions - Direct Detection

- The Enthusiasm of Experimentalist Pursuing Direct Dark Matter Grows Unabated
- LUX / PandaX-II / XENON1T reported final results
- DAMA/LIBRA Phase 2 > 1 tonne x year Ann. Mod. but new Nal experiments in direct conflict with this result with growing CL
- •Noble Targets
 - PandaX-4T operating at Jinping in 2021 (China) completed commissioning run results July 2021 3H removal started new science run
 - LZ (7t) reported first science results at Sanford Lab in July 2022 (US-DOE, UK, Portugal, S Korea ...) even better sensitivity
 - XENONnT at LNGS since 2021 (German, Swiss, US-NSF, Japan ...) looking to release ER results here, NR search soon
 - DarkSide20k (20 tonne major upgrade on previous 50 kg instrument) has goal of first fill in 2026
- Low Mass DM signal(s) many new technologies now aimed at sub-GeV and MeV candidates

• Improving Search Sensitivity Continues Apace

- New larger detectors are being delivered in order to keep rate of improvement for WIMP >5 GeV regime
- Necessary technologies for 50 tonne+ detectors seems readily achievable taking close and possibly into neutrino "fog"
 - We should see 8B solar neutrino signal in coming round of experiments (like ~6 GeV WIMP)
 - High Energy Atmospheric Neutrinos are still way off and will only begin to be seen in the 50 tonne+ detectors
 - Diffuse Supernova Background will hide under the Atm. Signal
- Reductions in threshold deliver major advances in low mass sensitivity (then the challenge will be to scale detector mass)
- Critically there has also been an improvement in our understanding of potential systematics in detector response
- Calibration strategies that can provide abundant statistics, and have low systematic uncertainties are critically important
- The Spectre of Discovery is always upon us, and is a great responsibility
 - Clearly, multiple detectors / multiple techniques will be required to build a robust case of discovery

Dark Matter Searches

SLIDES END