Dark Matter at the GeV Scale and Below With cryogenic detectors

Technische Universität München (TUM)

Raimund Strauss

IDM Vienna, 18.07.2022

Cryogenic Dark Matter Detectors

Cryogenic Detectors

$$C(T) = \frac{\Delta E}{\Delta T} \propto T^3$$

Need small heat capacity! Need small temperature (mK)

Cryogenic Detectors

$$C(T) = \frac{\Delta E}{\Delta T} \propto T^3$$

Need small heat capacity! Need small temperature (mK)

Sensor types:

EDELWEISS

Neutron-transmutation-doped (NTD) sensors

- Ge wafers with strong T-R dependence
- ➢ High linearity
- Sensitive to thermal phonons

CRESST, SuperCDMS, COSINUS, EDELWEISS

Transition-Edge-Sensor (TES)

- Thin-film deposited on crystals
- Strong R-T dependence at superconducting transition
- Sensitive to athermal phonons

R. Strauss, IDM 2022

The EXCESS background

Background Rejection

EDELWEISS R. Strauss, IDM 2022

160 180 200 Recoil energy

Dark Matter at the WIMP scale by R. Gaitskill

... and R&D is running full steam!

SuperCDMS @ SNOLAB

1.4kg Ge

Interleaved phonon and charge readout +V 0

 \rightarrow Particle discrimination

 \rightarrow E_{th} ~ 150 eV_{nr}

High voltage applied to electrodes

 \rightarrow Low Threshold

 $\rightarrow E_{th} \sim 60 eV_{nr}$

	iZIP		HV	
	Ge	Si	Ge	Si
Number of detectors	10	2	8	4
Total exposure [kg·yr]	45	3.9	36	7.8
Phonon resolution [eV]	33	19	34	13
Ionization resolution [eVee]	160	180	-	-
Voltage Bias $(V_+ - V)$ [V]	6	8	100	100

0.6kg Si

Phonons

... and R&D is running full steam!

SuperCDMS @ SNOLAB

1.4kg Ge

WIMP

iZIP HV Ge Si Ge Si Number of detectors 8 10 2 Total exposure [kg·yr] 45 3.9 36 7.834 Phonon resolution [eV] 33 19 13 Ionization resolution [eVee] 160 180 Voltage Bias $(V_+ - V_-)$ [V] 6 8 100 100

Overview of the SuperCDMS SNOLAB Experiment M. J. Wilson, Mo 16:50

Calibration of SuperCDMS HVeV detector Valentina Novati, Mo 15:20

SuperCDMS: novel active veto Hao Chen, Mo 15:20

0.6kg Si

R. Strauss, IDM 2022

 $\rightarrow E_{th} \sim 60\epsilon$

... and R&D is running full steam!

SuperCDMS @ Surface

HVeV detector

1cm² x 4mm Si wafer

→ Single e-h resolution $E_{th} = 9.2 \text{ eV}_{nr}$

ER background in the peaks!

NR between the peaks!

CPD detector

1mm thick Si wafer 10.6g

 $E_{th} = 16.3 eV_{nr}$

→ Sensitivity to 100MeV particles

PRL, arXiv:2007.14289

R. Strauss, IDM 2022

... and R&D is running full steam!

EDELWEISS @ LSM

<u>Recent results:</u> **EDELWEISS-Surf** [PRD 99 082013 (2019)] 33 g Ge bolometer. **Electron-DM results** [PRL 125, 141401 (2020)] HV 33 g Ge bolometer. **Migdal with NbSi TES** [arXiv:2203.03993

High voltage mode + NbSi TES

Nb_xSi_{1-x} 200g Ge spiral Al grid

 $E_{th} = 400eV_{nr}$ $E_{th} = 20eV_{ee} (HV)$

→ Ideal for Migdal searches

EDELWEISS @ Surface

33g Ge

Sub-GeV Dark Matter Searches with EDELWEISS: New results and prospects, H. Lattaud, Mo 16:30

... and R&D is running full steam!

CRESST-III @ LNGS

First results from CRESST-III Phys. Rev. D 100, 102002, arXiv:1904.00498 MeV-scale dark matter EPJ C volume 77, 637 (2017) arXiv:1707.06749

Detector A – 23.6 g CaWO₄

data taking period exposure baseline resolution nuclear recoil threshold 30.1 eV

Oct 2016 – Jan 2018 $5.698 \text{ kg} \cdot \text{days}$ 4.6 eV

E_{th} = 30.1eV_{nr}

 \rightarrow Leading SI limit at 150MeV to 2GeV \rightarrow Spin dependent ¹⁷O

CRESST @ Surface

 $0.5g Al_2O_3$

E_{th} =19.7 eV_{nr}

- \rightarrow Explored new SI parameter space in 2017
- \rightarrow Earth scattering limits

E_{th} =930 eV_{nr}

 \rightarrow Pathfinder for SD searches

... and R&D is running full steam!

CRESST-III @ LNGS

First results from CRESST-III Phys. Rev. D 100, 102002, arXiv:1904.00498 MeV-scale dark matter EPJ C volume 77, 637 (2017) arXiv:1707.06749

Stay tuned: New results (SI, SD, thresholds!) @IDM2022

Detector A - 23.6 g CaWO₄

data taking period exposure baseline resolution 4.6 eV nuclear recoil threshold 30.1 eV

Oct 2016 – Jan 2018 $5.698 \text{ kg} \cdot \text{days}$

E_{th} = 30.1eV_{nr}

 \rightarrow Leading SI limit at 150MeV to

The CRESST-III Dark Matter Search: Status and Outlook, C. Strandhagen, Mo 16:30

Probing Lithium targets in CRESST-III, S. Gupta , Mo 17:30

Characterization of a Low Background CaWO4 Crystal for CRESST-III, A. Kinast, Thu 14:40

CRESST @ Surface

 $0.5g Al_2O_3$

E_{th} =19.7 eV_{nr}

- \rightarrow Explored new SI parameter space in 2017
- \rightarrow Earth scattering limits

R. Strauss, IDM 2022

The low energy EXCESS background

- Feb 2022
- July 2022 @IDM

>300 participants(!)

The EXCESS initiative, van Krosigk & Kaznacheeva, Wed 9:00

Exponentially rising background towards lower energies

Currently limiting the sensitivity globally !

Origin still unknown, but a lot of R&D is going on ...

EXCESS – towards understanding its origin?

Confirms earlier EDELWEISS observations!

Excludes radioactive origin!Excludes (widely) crystal related effects!Excludes DM explanations!

EXCESS – towards understanding its origin?

Talk by H. Lattaud @EXCESS

High voltage applied doesn't change spectrum (in agreement with SuperCDMS observations, talk by V. Novati @Excess)

 \rightarrow No charges involved

x < 0.04% at 90% C.L.

→ Most events are "heat-only"

Mechanical stress? Thermal contractions

EXCESS – towards understanding its origin?

Detector

Strong hint for stress-induced origin of EXCESS (Holder? Sensor interface?)

Everyone, please reduce the stress-level !

More Challenges: Calibration at low energies

New sub-keV calibration techniques and their way

Electron recoils:

- Low energy X-rays
- Laser / LED sources
- Material activation
- Compton edges.
- ...

...

Nuclear recoils:

- Low-energy neutron scattering
- Neutron capture reaction

Neutron capture CRAB, V. Wagner, Thu 14:00 Laser calibration, K. Stifter, Thu 14:50 Neutron calibration for CRESST (poster), A. Fuß, Tue 19:00 100eV ionization measurement at TUNL, V. Novati, Mo 15:20

"Calibration sessions"

The CEvNS Spin-Offs

What's the point for DM searches?

Nail-down CEvNS cross-section

Boost for detector R&D

Calibration of detectors via CEvNS(!)

R. Strauss, IDM 2022

R. Strauss, IDM 2022

Long-standing 13.6 modulation signal observed Currently running: 245kg NaI(Tl)

Phonon-light will shed light on nature of DAMA signal!

New TES design: remoTES

New cryogenic facility at LNGS

New results from detector tests presented at IDM

Au-pad Au-pad Au-pad Au-pad Wafer TES Thermal link to heat bath

Si light detector "beaker"

R. Strauss, IDM 2022

Nal

Conclusion on cryogenic DM detectors

